王昊, 鲁文力. 基于剂量验证探讨鼻咽癌调强放疗分次治疗过程中靶区和危及器官的剂量变化[J]. 国际放射医学核医学杂志, 2024, 48(6): 366-373. DOI: 10.3760/cma.j.cn121381-202307019-00415
引用本文: 王昊, 鲁文力. 基于剂量验证探讨鼻咽癌调强放疗分次治疗过程中靶区和危及器官的剂量变化[J]. 国际放射医学核医学杂志, 2024, 48(6): 366-373. DOI: 10.3760/cma.j.cn121381-202307019-00415
Wang Hao, Lu Wenli. Exploring the dose changes in the target area and organs at risk during intensity-modulated radiotherapy fractionation therapy for nasopharyngeal carcinoma based on dose verifications[J]. Int J Radiat Med Nucl Med, 2024, 48(6): 366-373. DOI: 10.3760/cma.j.cn121381-202307019-00415
Citation: Wang Hao, Lu Wenli. Exploring the dose changes in the target area and organs at risk during intensity-modulated radiotherapy fractionation therapy for nasopharyngeal carcinoma based on dose verifications[J]. Int J Radiat Med Nucl Med, 2024, 48(6): 366-373. DOI: 10.3760/cma.j.cn121381-202307019-00415

基于剂量验证探讨鼻咽癌调强放疗分次治疗过程中靶区和危及器官的剂量变化

Exploring the dose changes in the target area and organs at risk during intensity-modulated radiotherapy fractionation therapy for nasopharyngeal carcinoma based on dose verifications

  • 摘要:
    目的  量化鼻咽癌患者在调强适形放射治疗(IMRT)分次治疗过程中靶区和危及器官的剂量变化。
    方法  回顾性分析2022年2至4月于重庆医科大学附属第一医院肿瘤科完成容积弧形调强放射治疗(VMAT)计划的27例鼻咽癌患者的临床资料,其中男性18例、女性9例,年龄(57.8±9.0)岁,范围40~72岁。对所有患者原发病灶的大体肿瘤靶区(GTVnx)、原发病灶侵犯区域的临床靶区(CTV1)、在CTV1的基础上向各方向外扩3 mm对应生成的鼻咽癌原发病灶侵犯区域的计划靶区(PTV1)以及脑干、脊髓、左腮腺、右腮腺等危及器官进行勾画。使用三维剂量验证系统Delta4对患者的初始计划进行33次剂量验证并采集每次剂量验证的数据,比较完成33次剂量验证后与第1次剂量验证后的实测剂量和百分剂量偏差(%DD)的差异。计量资料的组间比较采用配对t检验或Wilcoxon检验。
    结果  完成33次剂量验证后GTVnx平均剂量(Dmean)2.159(4.357) Gy对2.173(4.375) Gy、CTV195%靶体积的受照剂量(D95%)、5%靶体积的受照剂量(D5%)、Dmean (50.859±1.753) Gy对(51.305±1.756) Gy、64.261(2.979) Gy对64.395(2.984) Gy、0.135(0.064) Gy对0.136(0.065) Gy、PTV1(D95%、D5%、Dmean) (49.364±1.440) Gy对(49.827±1.459) Gy、64.105(3.201) Gy对64.149(3.273) Gy、0.089(0.032) Gy对0.090(0.033) Gy以及左腮腺Dmean1.185(0.612) Gy对1.188(0.686) Gy、右腮腺Dmean1.227(0.640) Gy对1.252(0.619)Gy的实测剂量较第1次剂量验证后均降低,差异均有统计学意义(Z=−4.397、t=−6.060、Z=−3.339、Z=−4.541、t=−6.870、Z=−3.363、Z=−4.541、Z=−2.667、Z=−3.460,均P<0.05);脑干1 cm3靶体积的受照剂量(D1cc)(40.770±3.670) Gy对(40.228±3.555) Gy的实测剂量较第1次剂量验证后升高,差异有统计学意义(t=5.903,P<0.001)。完成33次剂量验证后GTVnx2%靶体积的受照剂量(D2%)0.090(1.993)%对0.209(1.696)%、CTV1(D95%、D5%、Dmean)(0.153±1.575)%对(0.905±1.626)%、−0.203(1.737)%对0.050(1.572)%、(0.145±0.903)%对(0.475±0.956)%、PTV1(D95%、D5%、Dmean)(−1.017±1.237)%对(−0.213±1.303)%、−0.452(1.583)%对0.044(1.430)%、−0.003(1.130)%对0.385(0.960)%以及左腮腺Dmean9.778(5.093)%对10.018(5.795)%、右腮腺Dmean4.101(4.975)%对7.050(5.177)%的%DD较第1次剂量验证后均降低,差异均有统计学意义(Z=−3.195、t=−7.594、Z=−2.763、t=−3.254、t=−8.709、Z=−2.667、Z=−3.099、Z=−2.258、Z=−3.243,均P<0.05);脑干D1cc(3.895±3.135)%对(2.346±2.574)%、脊髓D1cc2.935(2.929)%对2.032(2.897)%的%DD较第1次剂量验证后均升高,差异均有统计学意义(t=7.469、Z=−4.469,均P<0.001)。完成12次剂量验证后,脑干D1cc(3.005±2.841)%对(2.346±2.574)%的%DD较第1次剂量验证后升高且差异有统计学意义(t=4.398,P<0.001),且%DD>3%。
    结论  在鼻咽癌IMRT分次治疗的过程中,靶区剂量和危及器官剂量均会发生明显的变化,其中脑干的剂量变化超出了临床可接受的范围,而其他参数的剂量变化未超出临床可接受的范围,这提示在鼻咽癌的放疗实施过程中应对脑干的剂量变化予以关注,以最大程度地提高治疗获益。

     

    Abstract:
    Objective  To quantify dose variations in target area and organs at risk during fractionation therapy of patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy (IMRT).
    Methods  A retrospective analysis was conducted on the clinical data of 27 patients with nasopharyngeal carcinoma who completed volumetric modulated arc therapy (VMAT) plans in the Department of Oncology of the First Affiliated Hospital of Chongqing Medical University from February to April 2022. The group consisted of 18 males and 9 females, with an average age of (57.8±9.0) years, ranging from 40 to 72 years old. For all patients, the gross tumor volume of the primary lesion (GTVnx), the clinical target volume of the area invaded by the primary lesion (CTV1), the planning target volume of the nasopharyngeal carcinoma primary lesion area generated by expanding 3 mm outward in all directions from CTV1 (PTV1), and the organs at risk such as the brainstem, spinal cord, left parotid gland, and right parotid gland were delineated. The three dimensional dose verification system Delta4 was used to perform 33 dose verifications based on the initial plans of the patients and to collect data from each dose verification. Compare the differences in measured dose and percentage dose differences (%DD) between the completed 33 dose verifications and the first dose verification. Intergroup comparisons of quantitative data were conducted using paired t-tests or Wilcoxon tests.
    Results  After completing 33 dose verifications, the mean dose (Dmean) of GTVnx (2.159(4.357) Gy vs. 2.173(4.375) Gy), the 95% target volume dose (D95%), the 5% target volume dose (D5%), the Dmean of CTV1 ((50.859±1.753) Gy vs. (51.305±1.756) Gy, 64.261(2.979) Gy vs. 64.395(2.984) Gy, 0.135(0.064) Gy vs. 0.136(0.065) Gy), the D95%, D5% and Dmean of PTV1 ((49.364±1.440) Gy vs. (49.827±1.459) Gy, 64.105(3.201) Gy vs. 64.149(3.273) Gy, 0.089(0.032) Gy vs. 0.090(0.033) Gy), and the Dmean of the left parotid gland and right parotid gland (1.185(0.612) Gy vs. 1.188(0.686) Gy, 1.227(0.640) Gy vs. 1.252(0.619) Gy) showed a decrease in measured doses compared with the first dose verification, with all differences being statistically significant (Z=−4.397, t=−6.060, Z=−3.339, Z=−4.541, t=−6.870, Z=−3.363, Z=−4.541, Z=−2.667, Z=−3.460; all P<0.05). The dose received by the 1 cm3 target volume (D1cc) of the brainstem ((40.770±3.670) Gy vs. (40.228±3.555) Gy) increased compared with the first dose verification, with a statistically significant difference (t=5.903, P <0.001). After completing 33 dose verification, the 2% target volume dose (D2%) of GTVnx (0.090(1.993)% vs. 0.209(1.696)%), the D95%, D5% and Dmean of CTV1 ((0.153±1.575)% vs. (0.905±1.626)%, −0.203(1.737)% vs. 0.050(1.572)%, (0.145±0.903)% vs. (0.475±0.956)%), the D95%, D5% and Dmean of PTV1 ((−1.017±1.237)% vs. (−0.213±1.303)%, −0.452(1.583)% vs. 0.044(1.430)%, −0.003(1.130)% vs. 0.385(0.960)%), and the Dmean of the left and right parotid glands (9.778(5.093)% vs. 10.018(5.795)%, 4.101(4.975)% vs. 7.050(5.177)%) decreased in %DD compared with the first dose verification, with all differences were statistically significant (Z=−3.195, t=−7.594, Z=−2.763, t=−3.254, t=−8.709, Z=−2.667, Z=−3.099, Z=−2.258, Z=−3.243; all P <0.05). The %DD of D1cc of the brainstem and the spinal cord ((3.895±3.135)% vs. (2.346±2.574)%, 2.935(2.929)% vs. 2.032(2.897)%) increased compared with the first dose verification, and both differences were statistically significant (t=7.469, Z=−4.469, both P <0.001). After completing 12 dose verifications, the %DD of D1cc of the brainstem ((3.005±2.841)% vs. (2.346±2.574)%) increased compared with the first dose verification and the difference was statistically significant (t=4.398, P <0.001) and %DD>3%.
    Conclusions  During fractionation therapy of nasopharyngeal carcinoma with IMRT, significant changes occur in the doses to the target area and organs at risk. Only the dose variation in the brainstem exceeds the clinically acceptable range. This finding suggests that attention should be paid to the dose variations in the brainstem during the implementation of radiotherapy for nasopharyngeal carcinoma to maximize the therapeutic benefit.

     

/

返回文章
返回