深度学习在非小细胞肺癌18F-FDG PET/CT中的应用与挑战

Application and challenges of deep learning in 18F-FDG PET/CT for non-small cell lung cancer

  • 摘要: 非小细胞肺癌(NSCLC)是最常见的肺癌类型,早期诊断和有效治疗对改善患者预后至关重要。18F- 氟脱氧葡萄糖(FDG) PET/CT是一种融合功能和解剖信息的成像技术,通过检测肿瘤的葡萄糖代谢活性,为NSCLC的诊断、分期、治疗反应评估以及生存预测提供重要辅助。近年来,深度学习(DL)在医学影像分析领域发展迅速,将其应用于18F-FDG PET/CT图像分析为NSCLC诊疗提供了新机遇。笔者围绕DL在18F-FDG PET/CT影像中应用于NSCLC的现状展开综述,重点探讨其在提高NSCLC精准分期、预测患者预后以及肿瘤区域分割等方面的价值,并对当前面临的挑战进行展望。

     

    Abstract: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, early diagnosis and effective treatment are crucial for improving patient prognosis. 18F-fluorodeoxyglucose (FDG) PET/CT is an integrated imaging technique that combines functional and anatomical information. By detecting the glucose metabolic activity of tumors, it provides important assistance in the diagnosis, staging, treatment response evaluation, and survival prediction of NSCLC. In recent years, deep learning (DL) has advanced rapidly in the field of medical image analysis. The application of DL techniques to 18F-FDG PET/CT image analysis offers new opportunities for the diagnosis and treatment of NSCLC. The authors review the current status of DL applications in 18F-FDG PET/CT imaging for NSCLC, focusing on their value in improving accurate staging, predicting patient prognosis, and segmenting tumor regions, while also discussing existing challenges and future prospects.

     

/

返回文章
返回