顾鹏诚, 罗发坚, 薛惠元, 陈娜, 孙亮, 万骏, 崔凤梅, 涂彧. 氚水长期暴露对斑马鱼子代生长发育影响的研究[J]. 国际放射医学核医学杂志, 2023, 47(10): 593-601. DOI: 10.3760/cma.j.cn121381-202308027-00350
引用本文: 顾鹏诚, 罗发坚, 薛惠元, 陈娜, 孙亮, 万骏, 崔凤梅, 涂彧. 氚水长期暴露对斑马鱼子代生长发育影响的研究[J]. 国际放射医学核医学杂志, 2023, 47(10): 593-601. DOI: 10.3760/cma.j.cn121381-202308027-00350
Pengcheng Gu, Fajian Luo, Huiyuan Xue, Na Chen, Liang Sun, Jun Wan, Fengmei Cui, Yu Tu. Effects of long-term exposure to tritiated water on the growth and development of zebrafish offspring[J]. Int J Radiat Med Nucl Med, 2023, 47(10): 593-601. DOI: 10.3760/cma.j.cn121381-202308027-00350
Citation: Pengcheng Gu, Fajian Luo, Huiyuan Xue, Na Chen, Liang Sun, Jun Wan, Fengmei Cui, Yu Tu. Effects of long-term exposure to tritiated water on the growth and development of zebrafish offspring[J]. Int J Radiat Med Nucl Med, 2023, 47(10): 593-601. DOI: 10.3760/cma.j.cn121381-202308027-00350

氚水长期暴露对斑马鱼子代生长发育影响的研究

Effects of long-term exposure to tritiated water on the growth and development of zebrafish offspring

  • 摘要:
    目的 研究氚水长期暴露对斑马鱼子代生长发育的影响。
    方法 将野生型AB品系斑马鱼所产胚胎暴露在0、1×102、1×105 Bq/L氚水中长期饲养作为亲代(F0代),待其性成熟后进行繁殖,所得子代作为F1代。F1代斑马鱼继续饲养在与F0代对应浓度的氚水中。观察F1代斑马鱼的生长发育情况,检测胚胎期的自主运动、心率,幼苗期的孵化率、体长、活性氧(ROS)荧光强度,幼鱼期的总超氧化物歧化酶(T-SOD)、丙二醛(MDA)、总氚含量,成鱼期的产卵量。各检测指标的组间比较采用t检验(方差齐)。
    结果 F1代0、1×102、1×105 Bq/L氚水暴露组斑马鱼的孵化率分别为(90.66±0.05)%、(85.63±0.10)%、(78.06±0.15)%,与0 Bq/L氚水暴露组相比, 1×102、1×105 Bq/L氚水暴露组F1代斑马鱼孵化率的差异均无统计学意义(t=0.785、1.370,P=0.462、0.220)。F1代3组斑马鱼受精后24 h的自主运动次数分别为(12.93±2.70)、(11.30±0.78)、(10.50±0.80) 次/min,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后24 h自主运动次数的差异均无统计学意义(t=1.008、1.499,P=0.370、0.208)。3组斑马鱼受精后36 h的自主运动次数分别为(3.63±1.43)、(4.50±1.15)、(5.40±3.55) 次/min,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后36 h自主运动次数的差异均无统计学意义(t=0.817、0.799,P=0.460、0.469)。3组斑马鱼受精后48 h的心率分别为(59.43±6.93)、(65.00±3.30)、(61.23±4.55) 次/20 s,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后48 h心率的差异均无统计学意义(t=1.256、0.376,P=0.278、0.726)。3组斑马鱼受精后60 h的心率分别为(69.87±2.71)、(66.17±6.97)、(69.77±9.08) 次/20 s,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后60 h心率的差异均无统计学意义(t=0.857、0.018,P=0.440、0.986)。3组斑马鱼受精后72 h的体长分别为(3.20±0.22)、(3.32±0.08)、(3.29±0.06) mm,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后72 h体长的差异均无统计学意义(t=0.614、0.178,P=0.525、0.868)。3组斑马鱼受精后84 h的体长分别为(3.42±0.07)、(3.46±0.11)、(3.40±0.04) mm,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼受精后84 h体长的差异均无统计学意义(t=0.527、0.496,P=0.626、0.646)。F1代3组斑马鱼ROS荧光强度分别为(21.07±4.74)、(23.71±7.73)、(23.19±5.32),与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼幼苗ROS荧光强度的差异均无统计学意义(t=0.582、0.593,P=0.582、0.575)。F1代3组斑马鱼在45 d时的T-SOD含量分别为(41.84±4.91)、(42.30±5.04)、(36.97±5.26) U/mgprot,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼45 d T-SOD含量的差异均无统计学意义(t=0.112、1.171,P=0.916、0.307)。3组斑马鱼60 d的T-SOD含量分别为(36.93±1.91)、(34.07±3.02)、(33.54±1.87) U/mgprot,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼45 d T-SOD含量的差异均无统计学意义(t=1.397、2.195,P=0.240、0.093)。3组斑马鱼45 d的MDA含量分别为(3.60±1.56)、(3.59±0.44)、(2.95±0.58) nmol/mgprot,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼MDA含量的差异均无统计学意义(t=0.007、0.677,P=0.995、0.536)。3组斑马鱼60 d的MDA含量分别为(4.00±0.52)、(4.19±1.37)、(3.01±0.32) nmol/mgprot,与0 Bq/L氚水暴露组相比,1×102 Bq/L氚水暴露组F1代斑马鱼60 d MDA含量的差异无统计学意义(t=0.229,P=0.830),1×105 Bq/L氚水暴露组F1代斑马鱼60 d MDA含量的差异有统计学意义(t=2.831,P=0.047)。F1代3组斑马鱼产卵量分别为(188±88)、(204±22)、(220±40)枚,与0 Bq/L氚水暴露组相比,1×102、1×105 Bq/L氚水暴露组F1代斑马鱼产卵量的差异均无统计学意义(t=0.400、0.757,P=0.700、0.477)。1×105 Bq/L 氚水长期暴露可导致F1代斑马鱼体内总氚含量的累积,鱼龄60 d时其体内总氚含量为(32.23±1.97) Bq/g。
    结论 1×105 Bq/L氚水长期暴露可导致F1代斑马鱼体内的氚含量积累。

     

    Abstract:
    Objective To study the effects of long-term tritiated water exposure on the growth and development of zebrafish offspring.
    Methods Embryos produced by wild-type AB strain zebrafish were exposed to 0, 1×102, and 1×105 Bq/L tritiated water for long-term feeding as parents (F0 generation). After their sexual maturity, they reproduced, and the offspring obtained were recorded as F1 generation. The F1 generation zebrafish continued to be raised in tritiated water concentrations corresponding to the F0 generation. We observed the growth and development of F1 generation zebrafish and detected autonomous movement and heart rate during the embryonic stage; hatching rate, body length, and reactive oxygen species (ROS) fluorescence intensity during the seedling stage; total superoxide dismutase (T-SOD), malondialdehyde (MDA), and total tritium contents during the juvenile stage; and egg production during the adult stage. The t-test was used for intergroup comparison of various detection indicators(equal variance).
    Results The hatching rates of the three groups of zebrafish in F1 generation were (90.66±0.05)%, (85.63±0.10)%, and (78.06±0.15)%. Compared with the 0 Bq/L tritiated water exposure group, no statistically significant difference was found in the hatching rate of F1 zebrafish between the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.785, 1.370; P=0.462, 0.220). The number of autonomous movement of the three groups of zebrafish in F1 generation at 24 h after fertilization was (12.93±2.70), (11.30±0.78), and (10.50±0.80) times/min. Compared with the 0 Bq/L tritiated water exposure group, we observed no statistically significant difference in the number of autonomous movements of F1 generation zebrafish at 24 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=1.008, 1.499; P=0.370, 0.208). The number of autonomous movement of the three groups of zebrafish at 36 h after fertilization was (3.63±1.43), (4.50±1.15), and (5.40±3.55) times/min. Compared with the 0 Bq/L tritiated water exposure group, we found no statistically significant difference in the number of autonomous movement of F1 generation zebrafish at 36 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.817, 0.799; P=0.460, 0.469). The heart rates of the three groups of zebrafish at 48 h after fertilization were (59.43±6.93), (65.00±3.30), and (61.23±4.55) times/20 s. Compared with the 0 Bq/L tritiated water exposure group, we observed no statistically significant difference in the heart rate of F1 generation zebrafish at 48 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=1.256, 0.376; P=0.278, 0.726). The heart rates of the three groups of zebrafish at 60 h after fertilization were (69.87±2.71), (66.17±6.97), and (69.77±9.08) times/20 s. Compared with the 0 Bq/L tritiated water exposure group, we found no statistically significant difference in the heart rate of F1 generation zebrafish at 60 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.857, 0.018; P=0.440, 0.986).The body lengths of the three groups of zebrafish at 72 h after fertilization were (3.20±0.22), (3.32±0.08), and (3.29±0.06) mm. Compared with the 0 Bq/L tritiated water exposure group, no statistically significant difference was noted in the body length of F1 generation zebrafish at 72 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.614, 0.178; P=0.525, 0.868). The body length of the three groups of zebrafish at 84 h after fertilization were (3.42±0.07), (3.46±0.11), and (3.40±0.04) mm. Compared with the 0 Bq/L tritiated water exposure group, no statistically significant difference was observed in the body length of F1 generation zebrafish at 84 h after fertilization in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.527, 0.496; P=0.626, 0.646). The ROS fluorescence intensities of the three groups of zebrafish in F1 generation were (21.07±4.74), (23.71±7.73), and (23.19±5.32), respectively. Compared with the 0 Bq/L tritiated water exposure group, there was no statistically significant difference in ROS fluorescence intensity of F1 generation zebrafish seedlings in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.582, 0.593; P=0.582, 0.575). The T-SOD contents of the three groups of zebrafish in F1 generation at 45 days were (41.84±4.91), (42.30±5.04), and (36.97±5.26) U/mgprot. Compared with the 0 Bq/L tritiated water exposure group, we found no statistically significant difference in the T-SOD content of F1 generation zebrafish at 45 days in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.112, 1.171; P=0.916, 0.307).The T-SOD contents of three groups of zebrafish at 60 days were (36.93±1.91), (34.07±3.02), and (33.54±1.87) U/mgprot. Compared with the 0 Bq/L tritiated water exposure group, there was no statistically significant difference in the T-SOD content of F1 generation zebrafish at 60 days in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=1.397, 2.195; P=0.240, 0.093). The MDA contents of the three groups of zebrafish at 45 days were (3.60±1.56), (3.59±0.44), and (2.95±0.58) nmol/mgprot. Compared with the 0 Bq/L tritiated water exposure group, we found no statistically significant difference in the MDA content of F1 generation zebrafish at 45 days in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.007, 0.677; P=0.995, 0.536). The MDA contents of the three groups of zebrafish at 60 days were (4.00±0.52), (4.19±1.37), and (3.01±0.32) nmol/mgprot. Compared with the 0 Bq/L tritiated water exposure group, there was no statistically significant difference in the MDA content in F1 generation zebrafish at 60 days in the 1×102 Bq/L tritiated water (t=0.229, P=0.830); the difference in the MDA content in F1 generation zebrafish exposed to 1×105 Bq/L tritiated water was statistically significant (t=2.831, P=0.047). The eggs laid by the three groups of zebrafish in F1 generation were 188±88, 204±22, and 220±40. Compared with the 0 Bq/L tritiated water exposure group, we found no statistically significant difference in the egg production of F1 generation zebrafish in the 1×102 Bq/L and 1×105 Bq/L tritiated water exposure groups (t=0.400, 0.757; P=0.700, 0.477). The tritium content in the body of F1 generation zebrafish was (32.23±1.97) Bq/g at 60 days.
    Conclusion Long-term exposure to 1×105 Bq/L tritiated water can lead to the accumulation of tritium in F1 generation zebrafish.

     

/

返回文章
返回