负荷心肌灌注显像中心率和血压变化预测女性心血管事件的研究进展

肖钰昕 武萍 赵宇婷 李思进

引用本文:
Citation:

负荷心肌灌注显像中心率和血压变化预测女性心血管事件的研究进展

    通讯作者: 李思进, lisjnm123@163.com

Research progress of heart rate and blood pressure changes in stress myocardial perfusion imaging for predicting female cardiovascular events

    Corresponding author: Sijin Li, lisjnm123@163.com
  • 摘要: 女性相比男性具有不同的冠状动脉(冠脉)解剖生理基础及神经激素水平,这导致其更多表现为非阻塞性冠脉微循环功能障碍。核素心肌灌注显像(MPI)血流绝对定量技术是一种无创性诊断冠心病(CAD)并对其进行风险评估的功能性检查方法。负荷试验中的心率和血压变化作为自主神经功能的替代指标,对女性血流灌注参数乃至不良心血管事件有一定的预测作用。笔者就负荷MPI中心率和血压变化对CAD诊断及风险评估的增益价值进行综述,为推进负荷MPI的临床应用及制定用以改善女性自主神经功能为靶点的诊疗方案提供依据。
  • [1] Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. Eur Heart J, 2018, 39(7): 508−579. DOI: 10.1093/eurheartj/ehx628.
    [2] Vaughan AS, Schieb L, Casper M. Historic and recent trends in county-level coronary heart disease death rates by race, gender, and age group, United States, 1979-2017[J/OL]. PLoS One, 2020, 15(7): e0235839[2021-07-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235839. DOI: 10.1371/journal.pone.0235839.
    [3] Sobhani K, Nieves Castro DK, Fu Q, et al. Sex differences in ischemic heart disease and heart failure biomarkers[J]. Biol Sex Differ, 2018, 9(1): 43. DOI: 10.1186/s13293-018-0201-y.
    [4] Picard F, Sayah N, Spagnoli V, et al. Vasospastic angina: A literature review of current evidence[J]. Arch Cardiovasc Dis, 2019, 112(1): 44−55. DOI: 10.1016/j.acvd.2018.08.002.
    [5] Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group[J]. Eur Heart J, 2020, 41(37): 3504−3520. DOI: 10.1093/eurheartj/ehaa503.
    [6] Vancheri F, Longo G, Vancheri S, et al. Coronary microvascular dysfunction[J]. J Clin Med, 2020, 9(9): 2880. DOI: 10.3390/jcm9092880.
    [7] Wang TKM, Grey C, Jiang Y, et al. Nationwide trends in acute coronary syndrome by subtype in New Zealand 2006-2016[J]. Heart, 2020, 106(3): 221−227. DOI: 10.1136/heartjnl-2019-315655.
    [8] Naderi S. Microvascular coronary dysfunction-an overview[J]. Curr atheroscler rep, 2018, 20(2): 7. DOI: 10.1007/s11883-018-0710-5.
    [9] Groepenhoff F, Eikendal ALM, Rittersma ZHS, et al. Persistent symptoms and health needs of women and men with non-obstructed coronary arteries in the years following coronary angiography[J/OL]. Frontiers Cardiovascular Medicine, 2021, 8: 670843[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126611. DOI: 10.3389/fcvm.2021.670843.
    [10] Burger IA, Lohmann C, Messerli M, et al. Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging[J/OL]. PLoS One, 2018, 13(8): e0202302[2021-07-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0202302. DOI: 10.1371/journal.pone.0202302.
    [11] Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation[J]. J Nucl Cardiol, 2018, 25(5): 1784−1846. DOI: 10.1007/s12350-018-1283-y.
    [12] Pelletier-Galarneau M, Dilsizian V. Microvascular angina diagnosed by absolute PET myocardial blood flow quantification[J]. Curr Cardiol Rep, 2020, 22(2): 9. DOI: 10.1007/s11886-020-1261-2.
    [13] Sud M, Han L, Koh M, et al. Association Between Adherence to fractional flow reserve treatment thresholds and major adverse cardiac events in patients with coronary artery disease[J]. JAMA, 2020, 324(23): 2406−2414. DOI: 10.1001/jama.2020.22708.
    [14] Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes[J]. Circulation, 2014, 129(24): 2518−2527. DOI: 10.1161/circula-tionaha.113.008507.
    [15] Boyd B, Solh T. Takotsubo cardiomyopathy: review of broken heart syndrome[J]. JAAPA, 2020, 33(3): 24−29. DOI: 10.1097/01.JAA.0000654368.35241.fc.
    [16] Hage FG, Heo J, Franks B, et al. Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus[J]. Am Heart J, 2009, 157(4): 771−776. DOI: 10.1016/j.ahj.2009.01.011.
    [17] Gebhard CE, Marędziak M, Portmann A, et al. Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2032−2041. DOI: 10.1007/s00259-019-04344-1.
    [18] Glaab T, Schmidt O, Fritsch J. Guidance to the interpretation of cardiopulmonary exercise testing[J]. Pneumologie, 2020, 74(2): 88−102. DOI: 10.1055/a-1069-0611.
    [19] Ho S, Qi D, Tan GP. Exercise intolerance due to chronotropic incompetence uncovered by cardiopulmonary exercise test: an often overlooked manifestation of ischaemic heart disease[J/OL]. Respirology Case Reports, 2021, 9(8): e00807[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239985. DOI: 10.1002/rcr2.807.
    [20] Mann A, Williams J. Considerations for stress testing performed in conjunction with myocardial perfusion imaging[J]. J Nucl Med Technol, 2020, 48(2): 114−121. DOI: 10.2967/jnmt.120.245308.
    [21] Lewis TC, Aberle C, Altshuler D, et al. Comparative effectiveness and safety between milrinone or dobutamine as initial inotrope therapy in cardiogenic shock[J]. J Cardiovasc Pharmacol Ther, 2019, 24(2): 130−138. DOI: 10.1177/1074248418797357.
    [22] Pouwels S, Van Genderen ME, Kreeftenberg HG, et al. Utility of the cold pressor test to predict future cardiovascular events[J]. Expert Rev Cardiovasc Ther, 2019, 17(4): 305−318. DOI: 10.1080/14779072.2019.1598262.
    [23] Juneau D, Wu KY, Kaps N, et al. Internal validation of myocardial flow reserve PET imaging using stress/rest myocardial activity ratios with Rb-82 and N-13-ammonia[J]. J Nucl Cardiol, 2021, 28(3): 835−850. DOI: 10.1007/s12350-020-02464-y.
    [24] Tomiyama T, Kumita S, Ishihara K, et al. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies[J]. Int J Cardiovasc Imaging, 2015, 31(5): 1089−1095. DOI: 10.1007/s10554-015-0654-6.
    [25] Slomka PJ, Alexanderson E, Jácome R, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT[J]. J Nucl Med, 2012, 53(2): 171−181. DOI: 10.2967/jnumed.111.095398.
    [26] Sdringola S, Johnson NP, Kirkeeide RL, et al. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers[J]. JACC Cardiovasc Imaging, 2011, 4(4): 402−412. DOI: 10.1016/j.jcmg.2011.02.008.
    [27] Gebhard C, Messerli M, Lohmann C, et al. Sex and age differences in the association of heart rate responses to adenosine and myocardial ischemia in patients undergoing myocardial perfusion imaging[J]. J Nucl Cardiol, 2020, 27(1): 159−170. DOI: 10.1007/s12350-018-1276-x.
    [28] Aljaroudi W, Anokwute C, Fughhi I, et al. The prognostic value of heart rate response during vasodilator stress myocardial perfusion imaging in patients with end-stage renal disease undergoing renal transplantation[J]. J Nucl Cardiol, 2019, 26(3): 814−822. DOI: 10.1007/s12350-017-1061-2.
    [29] Corban MT, Prasad A, Gulati R, et al. Sex-specific differences in coronary blood flow and flow velocity reserve in symptomatic patients with non-obstructive disease[J]. EuroIntervention, 2021, 16(13): 1079−1084. DOI: 10.4244/eij-d-19-00520.
    [30] Haider A, Bengs S, Maredziak M, et al. Heart rate reserve during pharmacological stress is a significant negative predictor of impaired coronary flow reserve in women[J]. Eur J Nucl Med Mol Imaging, 2019, 46(6): 1257−1267. DOI: 10.1007/s00259-019-4265-7.
    [31] Maredziak M, Bengs S, Portmann A, et al. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF)[J]. Eur J Nucl Med Mol Imaging, 2020, 47(13): 3094−3106. DOI: 10.1007/s00259-020-04892-x.
    [32] Mathur S, Shah AR, Ahlberg AW, et al. Blunted heart rate response as a predictor of cardiac death in patients undergoing vasodilator stress technetium-99m sestamibi gated SPECT myocardial perfusion imaging[J]. J Nucl Cardiol, 2010, 17(4): 617−624. DOI: 10.1007/s12350-010-9242-2.
    [33] Venkataraman R, Hage FG, Dorfman TA, et al. Relation between heart rate response to adenosine and mortality in patients with end-stage renal disease[J]. Am J Cardiol, 2009, 103(8): 1159−1164. DOI: 10.1016/j.amjcard.2009.01.007.
    [34] Lesnewich LM, Conway FN, Buckman JF, et al. Associations of depression severity with heart rate and heart rate variability in young adults across normative and clinical populations[J]. Int J Psychophysiol, 2019, 142: 57−65. DOI: 10.1016/j.ijpsycho.2019.06.005.
    [35] Gorur GD, Ciftci EA, Kozdag G, et al. Reduced heart rate response to dipyridamole in patients undergoing myocardial perfusion SPECT[J]. Ann Nucl Med, 2012, 26(8): 609−615. DOI: 10.1007/s12149-012-0618-z.
    [36] de Souza Leão Lima R, Machado L, Azevedo AB, et al. Predictors of abnormal heart rate response to dipyridamole in patients undergoing myocardial perfusion SPECT[J]. Ann Nucl Med, 2011, 25(1): 7−11. DOI: 10.1007/s12149-010-0420-8.
    [37] Cruickshank JM. Coronary flow reserve and the J curve relation between diastolic blood pressure and myocardial infarction[J]. BMJ, 1988, 297(6658): 1227−1230. DOI: 10.1136/bmj.297.6658.1227.
    [38] Caliskan M, Caliskan Z, Gullu H, et al. Increased morning blood pressure surge and coronary microvascular dysfunction in patient with early stage hypertension[J]. J Am Soc Hypertens, 2014, 8(9): 652−659. DOI: 10.1016/j.jash.2014.05.010.
    [39] Lembo M, Sicari R, Esposito R, et al. Association between elevated pulse pressure and high resting coronary blood flow velocity in patients with angiographically normal epicardial coronary arteries [J/OL]. J Am Heart Assoc, 2017, 6(7): e005710[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586295. DOI: 10.1161/jaha.117.005710.
  • [1] 田丛娜魏红星张晓丽 . PET心肌灌注显像测定心肌血流量及冠状动脉血流储备的研究进展. 国际放射医学核医学杂志, 2012, 36(5): 274-279. doi: 10.3760/cma.j.issn.1673-4114.2012.05.004
    [2] 薛冰冰李剑明 . SPECT定量心肌血流及冠状动脉血流储备的研究进展. 国际放射医学核医学杂志, 2019, 43(2): 160-165. doi: 10.3760/cma.j.issn.1673-4114.2019.02.011
    [3] 刘影裴著果 . 负荷心肌灌注显像与超声心动图对CAD患者的诊断和风险分级. 国际放射医学核医学杂志, 2001, 25(5): 198-203.
    [4] 孙茉茉李剑明 . PET心肌灌注显像及其定量分析的研究进展. 国际放射医学核医学杂志, 2017, 41(6): 423-429. doi: 10.3760/cma.j.issn.1673-4114.2017.06.008
    [5] 任俊灵张宗耀王小迪汪蕾方纬 . 利用CZT SPECT进行双核素双动态心脏显像定量分析的可行性研究. 国际放射医学核医学杂志, 2024, 48(1): 30-37. doi: 10.3760/cma.j.cn121381-202309002-00385
    [6] 闵长庚张永令 . 冠状动脉内注射133氙测定局部心肌血流量-和201铊心肌闪烁图的比较. 国际放射医学核医学杂志, 1982, 6(3): 172-176.
    [7] 卫华李思进刘建中武志芳刘海燕胡光王进李清99Tcm-N-NOET负荷和延迟门控心肌灌注显像对高血压患者的临床价值. 国际放射医学核医学杂志, 2010, 34(1): 23-26. doi: 10.3760/cma.j.issn.1673-4114.2010.01.006
    [8] 汪芳杨一峰蒋长英 . 多巴酚丁胺负荷心肌灌注显像. 国际放射医学核医学杂志, 1996, 20(1): 12-13.
    [9] 沈任如马寄晓 . 肝和肺显像结合超声方法测定有效门静脉血流量. 国际放射医学核医学杂志, 1994, 18(2): 94-94.
    [10] 金稚奎马材芳张金谷 . 应用123Ⅰ-IMP研究脑血流量. 国际放射医学核医学杂志, 1986, 10(3): 182-183.
    [11] 张延军闵长庚刘秀杰 . 运动高峰心率对正常人201Tl心肌清除的影响. 国际放射医学核医学杂志, 1987, 11(3): 188-188.
  • 加载中
计量
  • 文章访问数:  3548
  • HTML全文浏览量:  2492
  • PDF下载量:  13
出版历程
  • 收稿日期:  2021-07-20
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2022-03-25

负荷心肌灌注显像中心率和血压变化预测女性心血管事件的研究进展

    通讯作者: 李思进, lisjnm123@163.com
  • 山西医科大学第一医院核医学科,太原 030001

摘要: 女性相比男性具有不同的冠状动脉(冠脉)解剖生理基础及神经激素水平,这导致其更多表现为非阻塞性冠脉微循环功能障碍。核素心肌灌注显像(MPI)血流绝对定量技术是一种无创性诊断冠心病(CAD)并对其进行风险评估的功能性检查方法。负荷试验中的心率和血压变化作为自主神经功能的替代指标,对女性血流灌注参数乃至不良心血管事件有一定的预测作用。笔者就负荷MPI中心率和血压变化对CAD诊断及风险评估的增益价值进行综述,为推进负荷MPI的临床应用及制定用以改善女性自主神经功能为靶点的诊疗方案提供依据。

English Abstract

  • 心血管疾病是全世界病死率最高的疾病之一[1]。在过去的数十年,男性心血管疾病的发病率不断下降,而女性的发病率却呈上升趋势[1-2],且病死人数超过男性[2-3],这与女性的冠状动脉(冠脉)病理生理基础、自主神经状态及雌激素水平等相关。女性冠心病(coronary artery disease, CAD)患者多表现为非阻塞性冠脉微循环功能障碍[4-5],存在发生主要不良心血管事件(major adverse cardiovascular events, MACE)的风险[6-9]。并且,女性CAD患者常伴有交感神经活动增加[10],导致心输出量及心肌耗氧量增加,也会增加其发生MACE的风险。

    核素心肌灌注显像(myocardial perfusion imaging, MPI)血流绝对定量技术能够灵敏地检测静息及负荷状态下的心肌血流量(myocardial blood flow, MBF),获得冠脉血流储备(coronary flow reserve, CFR),提高对CAD的诊断效能[11-13]。在传统MPI正常的女性胸痛患者中,非阻塞性冠脉微循环功能障碍的检出率为54%[14]。此外,由于心脏交感神经分子影像技术复杂、成本较高,在临床应用中受限,而MPI检查过程中心率和血压的变化,近年来被报道可以作为自主神经功能的替代指标,用于CAD患者的风险评估[15-17]。在此背景下,本文通过负荷MPI中心率和血压的变化对血流灌注及MACE的预测价值进行综述,希望为进一步推进负荷MPI对女性CAD患者的诊断及风险评估提供指导,为制定以改善女性自主神经功能为靶点的诊治策略提供信息。

    • 健康机体在运动负荷状态下,心肌耗氧量相应增加,人体交感神经系统活动加强使得心率加快、心肌收缩力加强、心输出量增大、外周阻力增加,血压升高。当运动时收缩压下降,常意味着心输出量持平或减少,这可能提示受检者存在不良预后[18]。同时,运动负荷后若心率恢复至基线水平的时间较长,则可能提示受检者变时性功能不全,变时性功能不全被认为是预测MACE的独立因子[19]。运动负荷能够提供独立的预后价值,包括总运动时间、运动时的心率血压变化和心肌氧需求等。将这些数据与MPI相结合分析,可以为患者提供更好的预后价值以及危险分层[20]。尽管MPI运动负荷是一种更接近患者生理功能的方法,但实际操作中许多患者无法达到运动的最大水平,对此类患者,药物负荷试验成为一个更优的选择。而目前,药物负荷试验也是PET心肌血流检测时的主要负荷方式。

    • 不同的负荷药物通过扩张冠脉、增加血流量或增加心肌收缩力等,达到与运动负荷试验相似的效果。常用的扩张血管类药物有腺苷、双嘧达莫和瑞加诺生等。以腺苷为例,腺苷与平滑肌细胞上的嘌呤A2结合,刺激腺苷酸环化酶,增加细胞内的环磷酸腺苷,从而介导平滑肌舒张,血流量增加,导致心率增加、血压降低 [21]

    • 冷加压负荷试验主要探测的是冠脉内皮细胞交感神经支配的血管舒张功能,在冷刺激下,可引起冠脉内皮依赖性血流增加,导致动脉血压升高,促使心率加快、心肌收缩力增强,MBF增加[22]。冷加压负荷方式在临床中较少应用。

    • 多项临床研究结果显示,腺苷负荷MPI时,患者的负荷心率较静息心率增加,负荷血压较静息血压轻度降低,这符合腺苷的正常血流动力学反应[17, 23-24]。但也有学者有不同的报道。Slomka等[25]对33例受检者(包括18例无症状、15例心肌缺血)的研究发现,腺苷负荷下的收缩压较静息时未见明显变化[(124.2±18.1) mm Hg对(124.0±14.9) mm Hg]。Sdringola等 [26] 对107名健康受检者的研究发现,双嘧达莫负荷下受检者血压轻度升高[收缩压:(107±11) mm Hg 对(103±10) mm Hg,舒张压(60±8 ) mm Hg 对(59±7) mm Hg]。

      此外,在药物负荷情况下,心率的变化可能会受到年龄的影响。Gebhard等[27]在对MPI阳性的女性患者的研究中发现,腺苷负荷MPI时,> 55岁的患者心率储备(heart rate reserve, HRR)降低,而<55岁的患者HRR显著增加,HRR降低可能提示患者有自主神经功能障碍。

      患者合并的基础疾病也会影响心率和血压的变化。心脏自主神经病变是糖尿病及心脏病的慢性并发症之一, 其与糖尿病患者无痛性心肌梗死和心源性猝死关系密切。Hage等[16]研究发现,与非糖尿病患者相比,糖尿病患者的HRR明显降低;在病情更严重的糖尿病患者中,HRR降低尤为显著。此外,终末期肾病患者亦被发现自主神经功能障碍患病率更高[28],其与MACE的发生密切相关。

      综上,基于不同年龄、不同负荷药物及合并的基础疾病等影响因素,负荷MPI中心率和血压的变化具有异质性,可能反映着不同的自主神经功能状态,有必要对其进行关注,剖析其背后的病理生理意义,为临床相关诊疗策略的制定提供依据。

    • 药物负荷下,基线心率及收缩压的升高会导致静息血流量相应增高,继而导致CFR降低,这种现象在女性中更为常见,与生理状态有关,为了减少静息血流量的人群异质性,通常用率压乘积进行校正。然而,有学者发现校正后静息血流量仍然存在性别差异[29],相比单独的基线心率或峰值心率,HRR表现出更高的灵敏度。近来的研究结果显示,女性患者升高的基线心率或降低的HRR可能提示着一种自主神经功能障碍的病理状态,这类人群更容易出现CFR降低,导致MACE的发生。Gebhard等[17]分析了202例确诊或可疑的CAD患者[包括101例女性,年龄(61.3±12.6)岁]的临床资料,结果发现,女性患者更容易出现CFR降低,且女性HRR的降低与MACE的发生密切相关,而这种关联在男性患者中未被发现。同样,Haider等[30]对404例患者[包括202例女性,年龄(65.9±11.0)岁]研究发现,基线心率高、HRR降低的女性患者更容易表现出CFR异常,且经过多因素分析之后,HRR仍然是女性患者CFR以及负荷MBF的预测因子。Tomiyama等[24]对31例受试者[20例确诊CAD患者、4例慢性心力衰竭患者以及7例正常志愿者,年龄(66.3±11.8)岁]研究结果发现,HRR降低组患者的负荷MBF及CFR降低,MACE的发生率更高。

      Maredziak等[31]对1367例CAD患者[包括352例女性,年龄(63.1±11.6)岁]行PET-MPI扫描,并根据左心室射血分数(left ventricular ejection fraction,LVEF)进行分组,随访了698例患者(包括150例女性),结果显示,与LVEF正常(55%~65%)的女性相比,左心室射血分数≥65%的女性更容易发生MACE,而HRR降低(多因素分析后)可能是其中一个重要的影响因素。在一个更大规模的队列研究中,Mathur等[32]发现,即使在LVEF正常的患者中,HRR降低(多因素分析后)也是MACE的独立预测因子,该结论与Venkataraman等[33]的一项回顾性研究结果一致。

      此外,Lesnewich等[34]研究发现,HRR降低的自主神经功能障碍人群更容易合并其他异常。Gorur等[35]对201例确诊或可疑的CAD患者[包括女性108例,年龄(64.3±10岁)]的研究发现,在双嘧达莫负荷下,有78%的患者HRR降低,这些患者更容易合并糖尿病、慢性肾功能衰竭以及较低的高密度脂蛋白水平。de Souza Leǎo Lima等[36]对432例患者研究发现,HRR降低的患者更易合并肾功能衰竭及左心室功能异常。

    • 有文献报道了血压与血流灌注和MACE之间的关系。早在1988年,Cruickshank 等[37]发现,高血压患者的CFR及舒张压与心肌梗死之间存在J型曲线关系,即随着舒张压的升高,CFR增加,当舒张压在85~90 mmHg时,心肌梗死的发生率最低,之后随着舒张压的升高,心肌梗死的发生率也明显上升。随后,Caliskan等[38]对早期高血压患者的研究发现,晨起血压升高(以收缩压为著)与自主神经功能障碍有关,并且与CFR呈负相关。Lembo等[39]对心外膜冠脉正常患者进行了研究,结果发现,升高的脉压与静息冠脉血流速度相关,而与CFR的相关性并不显著。目前负荷状态血压变化预测血流灌注和MACE之间关系的相关报道较少。

    • 目前,关于负荷MPI时心率血压变化与血流灌注及MACE之间关系的研究尚存在诸多不足:(1)研究对象多是中老年女性(绝经期前后)患者,对年轻女性的关注较少,研究结果尚不适用于所有女性;女性的更年期状况、社会经济因素及精神因素可能会影响结果; (2)关于峰值心率及血压的记录标准以及HRR的临界值,目前尚缺乏统一标准,此外,尚缺乏相关神经递质检测验证HRR的研究;(3)多为回顾性研究,尚未开展前瞻性的临床验证研究。上述问题均需要进一步深入探讨。

      综上所述,负荷MPI的心率及血压变化可作为心脏自主神经功能的间接替代指标,反映女性的心肌血流灌注乃至心血管风险。在临床中常规且标准化的记录心率及血压变化,并将其与灌注参数联合考虑,可能有助于诊断心血管高风险的女性患者,为临床改善女性患者自主神经功能为靶点的诊治策略提供信息。

      利益冲突 所有作者均声明不存在利益冲突

      作者贡献声明 肖钰昕负责相关文献资料的收集与分析、综述的撰写;武萍负责综述的审阅与指导;赵宇婷负责文献资料的分析与整理;李思进负责综述最终版本的修订

参考文献 (39)

目录

    /

    返回文章
    返回