生长抑素受体显像剂在神经内分泌肿瘤中的临床研究进展

冯柳 吴爽 金晨涛 田梅

引用本文:
Citation:

生长抑素受体显像剂在神经内分泌肿瘤中的临床研究进展

    通讯作者: 田梅, meitian@zju.edu.cn

Clinical research progress of somatostatin receptor imaging agents in neuroendocrine tumors

    Corresponding author: Mei Tian, meitian@zju.edu.cn
  • 摘要: 神经内分泌肿瘤(NETs)是一类起源于神经内分泌细胞的异质恶性肿瘤,分化良好的NETs可过度表达生长抑素受体(SSTR)。放射性同位素标记的生长抑素类似物与SSTR的特异性结合可实现NETs的功能成像,对NETs的诊断及其患者的临床管理具有重要意义。近年来,研究者已成功研发出多种靶向SSTR的示踪剂并应用于临床,笔者总结了用于SPECT和PET的SSTR显像剂在NETs中的临床应用及其研究进展。
  • 表 1  放射性同位素标记的SSTR显像剂的分类及特征

    Table 1.  Classification and characteristics of radioisotope labeled somatostatin receptor imaging agents

    SSA
    类型
    显像
    方式
    放射性
    同位素
    生产方式半衰期衰变方式(%)主要射线
    能量(MeV)
    SSTR
    显像剂
    首次临床试验
    时间(年份)
    FDA
    批准
    激动剂 SPECT 123I 回旋加速器 13.2 h EC 0.159 123I-Tyr3-OC[3] 1989
    111In 回旋加速器 67.0 h EC 0.173 111In-DTPA-OC[4-6] 1992
    99Tcm 99Mo-99Tcm发生器 6.02 h γ衰变 0.14 99Tcm-HYNIC-TOC[7] 2000
    99Tcm-HYNIC-TATE[7] 2003
    PET 68Ga 68Ge-68Ga发生器 68 min β+(89.1) 1.899 68Ga-DOTA-TATE [8-13] 2007
    EC(10.9) 68Ga-DOTA-TOC[8-13] 2001
    68Ga-DOTA-NOC[8-13] 2005
    68Ga-DOTA-LAN[14-15] 2010
    68Ga-DATA-TOC[16] 2019
    64Cu 回旋加速器或反应堆 12.7 h β+(17.6) 0.653 64Cu-TETA-OC[17] 2001
    EC(43.9) 64Cu-DOTA-TATE[18-20] 2012
    β(38.5) 64Cu-SAR-TATE[21-22] 2019
    18F 回旋加速器 109.8 min β+(97) 0.635 18F-FP-Gluc-TOCA[23] 2003
    EC(3) 18F-FET-βAG-TOCA[24-25] 2016
    18F-AlF-NOTA-OC [26] 2019
    18F-SiFAlin-TATE[27] 2020
    44Sc 44Ti-44Sc发生器 3.97 h β+(94.27) 0.623 44Sc-DOTA-TOC[28] 2017
    EC(5.73)
    86Y 回旋加速器 14.7 h β+(31.9) 0.535 86Y-DOTA-TOC[29-30] 2001
    EC(68.1)
    拮抗剂 SPECT 111In 回旋加速器 67.0 h EC 0.173 111In-DOTA-BASS[31-33] 2011
    PET 68Ga 68Ge-68Ga发生器 68 min β+(89.1) 1.899 68Ga-NODAGA-JR11[34-36] 2018
    EC(10.9) 68Ga-DOTA-JR11[37] 2019
    68Ga-NODAGA-LM3[38] 2021
    68Ga-DOTA-LM3[38] 2021
    注:SSTR为生长抑素受体;FDA为美国食品与药品监督管理局;SPECT为单光子发射计算机体层摄影术;PET为正电子发射断层显像术;β+为正电子;β为负电子;EC为电子俘获;SSA为生长抑素类似物;OC为奥曲肽;Tyr3为酪氨酸3;DTPA为二亚乙基三胺五乙酸;HYNIC为肼基烟酰胺;DOTA为1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸;TOC为1-苯丙氨酸-酪氨酸3-奥曲肽;TATE为右旋-苯丙氨酸1-酪氨酸3-奥曲肽;NOC为萘丙氨酸1-奥曲肽;LAN为兰瑞肽;DATA为6-氨基-1,4-二氮杂三乙酸酯;TETA为1,4,8,11-四氮杂环十四烷-N,N′,N″,N′ ″-四乙酸;SAR为5-(8-甲基-3,6, 10,13,16,19-六氮杂-双环[6,6,6]二十烷-1-基氨基)-5-氧戊酸;18F-FP-Gluc-TOCA为α-N -(1-脱氧-D-果糖基)-Nε-(2-18F-氟丙酰基)-赖氨酸0-酪氨酸3-奥曲酸;18F-FET-βAG-TOCA为18F-氟乙基三唑-酪氨酸3-奥曲肽;18F-AlF-NOTA-OC为18F-Al-1, 4, 7-三氮杂环壬烷-1, 4, 7-三乙酸-奥曲肽;18F-SiFAlin-TATE为18F-对二叔丁基氟硅基-苯甲醛-奥曲肽;BASS为p-NO2-Phe-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-Cys)D-Tyr-NH2;NODAGA为1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;JR11为Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2;LM3为p-Cl-Phe-cyclo(D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys)D-Tyr-NH2
    下载: 导出CSV
  • [1] Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors[J]. CA Cancer J Clin, 2018, 68(6): 471−487. DOI: 10.3322/caac.21493.
    [2] Katz MD, Erstad BL. Octreotide, a new somatostatin analogue[J]. Clin Pharm, 1989, 8(4): 255−273.
    [3] Krenning EP, Breeman WAP, Kooij PPM, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin[J]. Lancet, 1989, 333(8632): 242−244. DOI: 10.1016/S0140-6736(89)91258-0.
    [4] Graham MM, Gu XM, Ginader T, et al. 68Ga-DOTATOC imaging of neuroendocrine tumors: a systematic review and metaanalysis[J]. J Nucl Med, 2017, 58(9): 1452−1458. DOI: 10.2967/jnumed.117.191197.
    [5] Ambrosini V, Campana D, Tomassetti P, et al. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET[J]. Eur J Nucl Med Mol Imaging, 2012, 39(Suppl 1): S52−60. DOI: 10.1007/s00259-011-1989-4.
    [6] Vija L, Dierickx L, Courbon F. Receptor radionuclide targeting for neuroendocrine tumors (NET) diagnostic and therapy[J]. Ann Endocrinol (Paris), 2019, 80(3): 166−171. DOI: 10.1016/j.ando.2019.04.005.
    [7] Xu JY, Li Y, Xu XP, et al. Clinical application of 99mTc-HYNIC-TOC SPECT/CT in diagnosing and monitoring of pancreatic neuroendocrine neoplasms[J]. Ann Nucl Med, 2018, 32(7): 446−452. DOI: 10.1007/s12149-018-1266-8.
    [8] O'Toole D, Kianmanesh R, Caplin M. ENETS 2016 consensus guidelines for the management of patients with digestive neuroendocrine tumors: an update[J]. Neuroendocrinology, 2016, 103(2): 117−118. DOI: 10.1159/000443169.
    [9] Sanli Y, Garg I, Kandathil A, et al. Neuroendocrine tumor diagnosis and management: 68Ga-DOTATATE PET/CT[J]. AJR Am J Roentgenol, 2018, 211(2): 267−277. DOI: 10.2214/AJR.18.19881.
    [10] Deppen SA, Liu E, Blume JD, et al. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors[J]. J Nucl Med, 2016, 57(5): 708−714. DOI: 10.2967/jnumed.115.163865.
    [11] de Camargo, Etchebehere EC, de Oliveira Santos A, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial[J]. J Nucl Med, 2014, 55(10): 1598−1604. DOI: 10.2967/jnumed.114.144543.
    [12] Ito T, Jensen RT. Molecular imaging in neuroendocrine tumors: recent advances, controversies, unresolved issues, and roles in management[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24(1): 15−24. DOI: 10.1097/MED.0000000000000300.
    [13] Singh S, Poon R, Wong R, et al. 68Ga PET imaging in patients with neuroendocrine tumors: a systematic review and meta-analysis[J]. Clin Nucl Med, 2018, 43(11): 802−810. DOI: 10.1097/RLU.0000000000002276.
    [14] Traub-Weidinger T, von Guggenberg E, Dobrozemsky G, et al. Preliminary experience with 68Ga-DOTA-lanreotide positron emission tomography[J]. Q J Nucl Med Mol Imaging, 2010, 54(1): 52−60.
    [15] Putzer D, Kroiss A, Waitz D, et al. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0, Tyr3-octreotide versus 68Ga-DOTA0-lanreotide[J]. Eur J Nucl Med Mol Imaging, 2013, 40(3): 364−372. DOI: 10.1007/s00259-012-2286-6.
    [16] Yadav D, Ballal S, Yadav MP, et al. Evaluation of [68Ga]Ga-DATA-TOC for imaging of neuroendocrine tumours: comparison with [68Ga]Ga-DOTA-NOC PET/CT[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 860−869. DOI: 10.1007/s00259-019-04611-1.
    [17] Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors[J]. J Nucl Med, 2001, 42(2): 213−221.
    [18] Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors[J]. J Nucl Med, 2017, 58(3): 451−457. DOI: 10.2967/jnumed.116.180430.
    [19] Loft M, Carlsen EA, Johnbeck CB, et al. 64Cu-DOTATATE PET in patients with neuroendocrine neoplasms: prospective, head-to-head comparison of imaging at 1 hour and 3 hours after injection[J]. J Nucl Med, 2021, 62(1): 73−80. DOI: 10.2967/jnumed.120.244509.
    [20] Delpassand ES, Ranganathan D, Wagh N, et al. 64Cu-DOTATATE PET/CT for imaging patients with known or suspected somatostatin receptor-positive neuroendocrine tumors: results of the first U. S. prospective, reader-masked clinical trial[J]. J Nucl Med, 2020, 61(6): 890−896. DOI: 10.2967/jnumed.119.236091.
    [21] Paterson BM, Roselt P, Denoyer D, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate[J]. Dalton Trans, 2014, 43(3): 1386−1396. DOI: 10.1039/c3dt52647j.
    [22] Hicks RJ, Jackson P, Kong G, et al. 64Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy[J]. J Nucl Med, 2019, 60(6): 777−785. DOI: 10.2967/jnumed.118.217745.
    [23] Meisetschläger G, Poethko T, Stahl A, et al. Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide[J]. J Nucl Med, 2006, 47(4): 566−573.
    [24] Dubash SR, Keat N, Mapelli P, et al. Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors[J]. J Nucl Med, 2016, 57(8): 1207−1213. DOI: 10.2967/jnumed.115.169532.
    [25] Waldmann CM, Stuparu AD, van Dam RM, et al. The search for an alternative to [68Ga]68Ga-DOTA-TATE in neuroendocrine tumor theranostics: current state of 18F-labeled somatostatin analog development[J/OL]. Theranostics, 2019, 9(5): 1336−1347[2021-02-24]. https://www.thno.org/v09p1336.htm. DOI: 10.7150/thno.31806.
    [26] Pauwels E, Cleeren F, Tshibangu T, et al. [18F]AlF-NOTA-octreotide PET imaging: biodistribution, dosimetry and first comparison with [68Ga]Ga-DOTATATE in neuroendocrine tumour patients[J]. Eur J Nucl Med Mol Imaging, 2020, 47(13): 3033−3046. DOI: 10.1007/s00259-020-04918-4.
    [27] Ilhan H, Lindner S, Todica A, et al. Biodistribution and first clinical results of 18F-Si FAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 870−880. DOI: 10.1007/s00259-019-04501-6.
    [28] Singh A, van der Meulen NP, Müller C, et al. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study[J]. Cancer Biother Radiopharm, 2017, 32(4): 124−132. DOI: 10.1089/cbr.2016.2173.
    [29] 陈文, 魏洪源, 周志军, 等. 金属正电子核素64Cu, 68Ga, 86Y和89Zr的PET标记药物研究进展[J]. 同位素, 2017, 30(1): 78−88. DOI: 10.7538/tws.2017.30.01.0078.
    Chen W, Wei HY, Zhou ZJ, et al. Positron emission radiometals 64Cu, 68Ga, 86Y and 89Zr labeled PET drugs[J]. J Isotopes, 2017, 30(1): 78−88. DOI: 10.7538/tws.2017.30.01.0078.
    [30] Helisch A, Förster GJ, Reber H, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2004, 31(10): 1386−1392. DOI: 10.1007/s00259-004-1561-6.
    [31] 谢卿, 朱华, 刘特立, 等. 生长抑素受体拮抗剂68Ga-NOTA-JR11的制备及其microPET显像[J]. 中华核医学与分子影像杂志, 2019, 39(8): 473−477. DOI: 10.3760/cma.j.issn.2095-2848.2019.08.006.
    Xie Q, Zhu H, Liu TL, et al. Preparation and microPET imaging of somatostatin receptor antagonist 68Ga-NOTA-JR11[J]. Chin J Nucl Med Mol Imaging, 2019, 39(8): 473−477. DOI: 10.3760/cma.j.issn.2095-2848.2019.08.006.
    [32] Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy[J]. J Nucl Med, 2017, 58(Suppl 2): S61−66. DOI: 10.2967/jnumed.116.186783.
    [33] Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible[J]. J Nucl Med, 2011, 52(9): 1412−1417. DOI: 10.2967/jnumed.111.088922.
    [34] 刘炳楠, 王颖, 要少波. 神经内分泌肿瘤核医学显像剂的研究进展[J]. 国际放射医学核医学杂志, 2020, 44(9): 582−588. DOI: 10.3760/cma.j.cn121381-201906012-00062.
    Liu BN, Wang Y, Yao SB. Research progress of nuclear medicine imaging tracers for neuroendocrine neoplasma[J]. Int J Radiat Med Nucl Med, 2020, 44(9): 582−588. DOI: 10.3760/cma.j.cn121381-201906012-00062.
    [35] Nicolas GP, Beykan S, Bouterfa H, et al. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase Ⅰ imaging study[J]. J Nucl Med, 2018, 59(6): 909−914. DOI: 10.2967/jnumed.117.199737.
    [36] Nicolas GP, Schreiter N, Kaul F, et al. Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase Ⅱ imaging study[J]. J Nucl Med, 2018, 59(6): 915−921. DOI: 10.2967/jnumed.117.199760.
    [37] Zhu WJ, Cheng YJ, Wang XZ, et al. Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study[J]. J Nucl Med, 2020, 61(6): 897−903. DOI: 10.2967/jnumed.119.235093.
    [38] Huo L, Zhu WJ, Cheng YJ, et al. A prospective randomized, double-blind study to evaluate the safety, biodistribution, and dosimetry of 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3 in patients with well-differentiated neuroendocrine tumors[J/OL]. J Nucl Med, 2021, 62(7). https://jnm.snmjournals.org/content/early/2021/02/12/jnumed.120.253096. DOI: 10.2967/jnumed.120.253096.
  • [1] 杨玲黄琦胡显文王攀 . 核素标记的生长抑素受体拮抗剂在神经内分泌肿瘤显像和治疗中的研究进展. 国际放射医学核医学杂志, 2022, 46(5): 309-315. doi: 10.3760/cma.j.cn121381-202105016-00175
    [2] 董彦良张靖峰韩蕴孙树伟徐白萱177Lu-DOTA-TATE治疗晚期转移性神经内分泌瘤的辐射剂量学、药代动力学和安全性评估. 国际放射医学核医学杂志, 2023, 47(12): 738-745. doi: 10.3760/cma.j.cn121381-202303028-00370
    [3] 樊建坤王腾杨瀚唐光才江国豪 . 肺神经内分泌肿瘤的CT与18F-FDG PET/CT显像特征的分析. 国际放射医学核医学杂志, 2021, 45(9): 561-569. doi: 10.3760/cma.j.cn121381-202006026-00083
    [4] 刘淼刘兴党 . 生长抑素受体显像剂99Tcm-奥曲肽的SPECT研究. 国际放射医学核医学杂志, 2012, 36(3): 138-141. doi: 10.3760/cma.j.issn.1673-4114.2012.03.003
    [5] 段钰李斌高卉吴晶涛 . 神经内分泌肿瘤PET/CT的应用现状与进展. 国际放射医学核医学杂志, 2013, 37(3): 186-192. doi: 10.3760/cma.j.issn.1673-4114.2013.03.014
    [6] 赵润泽张一帆18F-FDG和68Ga-DOTA-SSA双示踪剂PET/CT在神经内分泌肿瘤中的临床应用. 国际放射医学核医学杂志, 2021, 45(9): 585-590. doi: 10.3760/cma.j.cn121381-202008043-00091
    [7] 樊晓婷张俊 . 神经内分泌瘤肽受体放射性核素治疗新策略的研究进展. 国际放射医学核医学杂志, 2023, 47(1): 52-58. doi: 10.3760/cma.j.cn121381-202205001-00260
    [8] 张紫薇程刚 . 放射性核素在嗜铬细胞瘤诊断与治疗中的应用进展. 国际放射医学核医学杂志, 2019, 43(1): 82-87. doi: 10.3760/cma.j.issn.1673-4114.2019.01.014
    [9] 周晓靓王浩施培基刘鉴峰孟爱民 . 表皮生长因子受体-酪氨酸激酶肿瘤分子显像剂的研究进展. 国际放射医学核医学杂志, 2013, 37(2): 100-103. doi: 10.3760/cma.j.issn.1673-4114.2013.02.010
    [10] 张立王敏兰晓莉曹卫 . 子宫内膜异位症分子影像学诊断的研究进展. 国际放射医学核医学杂志, 2022, 46(3): 162-167. doi: 10.3760/cma.j.cn121381-202108020-00153
    [11] 王翰邓启民曾永龙90Y-DOTATOC对人胰腺神经内分泌瘤BON-1细胞的抑制作用. 国际放射医学核医学杂志, 2023, 47(5): 289-294. doi: 10.3760/cma.j.cn121381-202208003-00300
  • 加载中
表(1)
计量
  • 文章访问数:  11448
  • HTML全文浏览量:  10502
  • PDF下载量:  73
出版历程
  • 收稿日期:  2021-02-25
  • 刊出日期:  2021-06-25

生长抑素受体显像剂在神经内分泌肿瘤中的临床研究进展

    通讯作者: 田梅, meitian@zju.edu.cn
  • 浙江大学医学院附属第二医院核医学科,杭州 310009

摘要: 神经内分泌肿瘤(NETs)是一类起源于神经内分泌细胞的异质恶性肿瘤,分化良好的NETs可过度表达生长抑素受体(SSTR)。放射性同位素标记的生长抑素类似物与SSTR的特异性结合可实现NETs的功能成像,对NETs的诊断及其患者的临床管理具有重要意义。近年来,研究者已成功研发出多种靶向SSTR的示踪剂并应用于临床,笔者总结了用于SPECT和PET的SSTR显像剂在NETs中的临床应用及其研究进展。

English Abstract

  • 神经内分泌肿瘤(neuroendocrine tumors,NETs)是一类起源于神经内分泌细胞的异质恶性肿瘤,分化良好的NETs可过度表达生长抑素受体(somatostatin receptor,SSTR)。奥曲肽、兰瑞肽等生长抑素类似物(somatostatin analogue,SSA)可与SSTR特异性结合。放射性核素标记的SSA可用于NETs的功能代谢显像,对疾病的早期诊断和精准定位具有重要意义。

    • SSTR属于G蛋白偶联受体家族,共有5个亚型(SSTR1~5),以SSTR2最为常见[1]。奥曲肽、兰瑞肽和地普奥肽等是人工合成的SSTR激动剂,可与SSTR特异性结合,其中以奥曲肽的应用最为广泛。奥曲肽为八肽氨基酸序列,对SSTR具有较高的亲合力,尤其是SSTR2和SSTR5[2]。随着核医学分子影像技术的不断发展,不同放射性核素标记的SSA已得到成功研发,并应用于SPECT和PET的显像诊断(表1)。

      SSA
      类型
      显像
      方式
      放射性
      同位素
      生产方式半衰期衰变方式(%)主要射线
      能量(MeV)
      SSTR
      显像剂
      首次临床试验
      时间(年份)
      FDA
      批准
      激动剂 SPECT 123I 回旋加速器 13.2 h EC 0.159 123I-Tyr3-OC[3] 1989
      111In 回旋加速器 67.0 h EC 0.173 111In-DTPA-OC[4-6] 1992
      99Tcm 99Mo-99Tcm发生器 6.02 h γ衰变 0.14 99Tcm-HYNIC-TOC[7] 2000
      99Tcm-HYNIC-TATE[7] 2003
      PET 68Ga 68Ge-68Ga发生器 68 min β+(89.1) 1.899 68Ga-DOTA-TATE [8-13] 2007
      EC(10.9) 68Ga-DOTA-TOC[8-13] 2001
      68Ga-DOTA-NOC[8-13] 2005
      68Ga-DOTA-LAN[14-15] 2010
      68Ga-DATA-TOC[16] 2019
      64Cu 回旋加速器或反应堆 12.7 h β+(17.6) 0.653 64Cu-TETA-OC[17] 2001
      EC(43.9) 64Cu-DOTA-TATE[18-20] 2012
      β(38.5) 64Cu-SAR-TATE[21-22] 2019
      18F 回旋加速器 109.8 min β+(97) 0.635 18F-FP-Gluc-TOCA[23] 2003
      EC(3) 18F-FET-βAG-TOCA[24-25] 2016
      18F-AlF-NOTA-OC [26] 2019
      18F-SiFAlin-TATE[27] 2020
      44Sc 44Ti-44Sc发生器 3.97 h β+(94.27) 0.623 44Sc-DOTA-TOC[28] 2017
      EC(5.73)
      86Y 回旋加速器 14.7 h β+(31.9) 0.535 86Y-DOTA-TOC[29-30] 2001
      EC(68.1)
      拮抗剂 SPECT 111In 回旋加速器 67.0 h EC 0.173 111In-DOTA-BASS[31-33] 2011
      PET 68Ga 68Ge-68Ga发生器 68 min β+(89.1) 1.899 68Ga-NODAGA-JR11[34-36] 2018
      EC(10.9) 68Ga-DOTA-JR11[37] 2019
      68Ga-NODAGA-LM3[38] 2021
      68Ga-DOTA-LM3[38] 2021
      注:SSTR为生长抑素受体;FDA为美国食品与药品监督管理局;SPECT为单光子发射计算机体层摄影术;PET为正电子发射断层显像术;β+为正电子;β为负电子;EC为电子俘获;SSA为生长抑素类似物;OC为奥曲肽;Tyr3为酪氨酸3;DTPA为二亚乙基三胺五乙酸;HYNIC为肼基烟酰胺;DOTA为1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸;TOC为1-苯丙氨酸-酪氨酸3-奥曲肽;TATE为右旋-苯丙氨酸1-酪氨酸3-奥曲肽;NOC为萘丙氨酸1-奥曲肽;LAN为兰瑞肽;DATA为6-氨基-1,4-二氮杂三乙酸酯;TETA为1,4,8,11-四氮杂环十四烷-N,N′,N″,N′ ″-四乙酸;SAR为5-(8-甲基-3,6, 10,13,16,19-六氮杂-双环[6,6,6]二十烷-1-基氨基)-5-氧戊酸;18F-FP-Gluc-TOCA为α-N -(1-脱氧-D-果糖基)-Nε-(2-18F-氟丙酰基)-赖氨酸0-酪氨酸3-奥曲酸;18F-FET-βAG-TOCA为18F-氟乙基三唑-酪氨酸3-奥曲肽;18F-AlF-NOTA-OC为18F-Al-1, 4, 7-三氮杂环壬烷-1, 4, 7-三乙酸-奥曲肽;18F-SiFAlin-TATE为18F-对二叔丁基氟硅基-苯甲醛-奥曲肽;BASS为p-NO2-Phe-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-Cys)D-Tyr-NH2;NODAGA为1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;JR11为Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2;LM3为p-Cl-Phe-cyclo(D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys)D-Tyr-NH2

      表 1  放射性同位素标记的SSTR显像剂的分类及特征

      Table 1.  Classification and characteristics of radioisotope labeled somatostatin receptor imaging agents

    • 20世纪90年代初,111In 和123I标记的奥曲肽SSTR功能显像剂便已应用于临床[3]111In-二亚乙基三胺五乙酸-奥曲肽(111In-diethylene-triaminepentaacetic acid-octreotide,111In-DTPA-OC)被美国食品与药品监督管理局(Food and Drug Administration,FDA)批准为NETs显像剂[4],是过去20年NETs功能显像的“金标准”显像剂[5]。以111In-DTPA-OC为显像剂的闪烁扫描显像技术(包括γ相机、SPECT、SPECT/CT)对NETs病灶均具有较高的检出率(50%~100%)[6]。虽然111In-DTPA-OC已广泛应用于NETs患者的诊断,但仍然存在一定的局限性:(1)111In的半衰期较长(67 h),导致辐射剂量较高;(2)111In发射的两种γ射线能量和丰度(0.173 MeV,89%和0.247 MeV,94%)相对较高,导致图像的空间分辨率降低;(3)111In-DTPA-OC在体内定位分布缓慢,耗费的时间成本较高[4]

      99Tcm-乙二胺N,N-二乙酸-酪氨酸3-奥曲肽[(99Tcm-ethylenediamine N, N-diacetic acid, EDDA)-Tyr3-octreotide,99Tcm-EDDA-TOC]、99Tcm-乙二胺N, N-肼基烟酰胺-酪氨酸3-奥曲肽[(99Tcm-ethylenediamine N, N-hydrazino-nicotinamide, HYNIC)-Tyr3-octreotide,99Tcm-HYNIC-TOC]和99Tcm-肼基烟酰胺-酪氨酸3-苏氨酸8-奥曲肽酸(99Tcm-HYNIC-Tyr3-Thr8- octreotade,99Tcm-HYNIC-TATE)的研发成功克服了111In-DTPA-OC的部分局限性。相较于111In-DTPA-OC,99Tcm-HYNIC-TOC具有更高的T/NT、更好的病灶定位能力和更高的诊断准确率,但受显像技术的影响,它对淋巴结和肝脏中长径<1 cm病变的检测能力仍然较差[7]

    • 68Ga-SSA在NETs中的临床研究最为广泛,主要分为两大类。第一类是以1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid,DOTA)为螯合剂,如68Ga-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-苯丙氨酸1-酪氨酸3-奥曲肽(68Ga-DOTA-Phe1-Tyr3-OC,68Ga-DOTA-TOC)、68Ga-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-酪氨酸3-奥曲肽酸(68Ga-DOTA-Tyr3-octreotade,68Ga-DOTA-TATE)、68Ga-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-碘化钠3-奥曲肽(68Ga-DOTA-NaI3-OC,68Ga-DOTA-NOC)和68Ga-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-兰瑞肽(68Ga-DOTA-lanreotide,68Ga-DOTA-LAN)。前三者已成为NETs SSTR显像的新标准显像剂[8],其中68Ga-DOTA-TATE已获美国FDA批准应用于临床[5],并被纳入NETs诊断的美国国立综合癌症网络(National Comprehensive Cancer Network,NCCN)指南[9]。该指南提出,68Ga-DOTA-TATE PET/CT可作为NETs初始诊断、原发肿瘤的定位以及肽受体放射性核素治疗(peptide receptor radionuclide therapy,PRRT)的首选方案[9]

      在肺、胃肠道和胰腺的NETs诊断方面,68Ga-DOTA-TATE与111In-DTPA-OC具有相似的特异度(93%),但是68Ga-DOTA-TATE的灵敏度和总体准确率均高于111In-DTPA-OC(分别为96% vs. 72%和94% vs. 84%)[10]。与99Tcm-HYNIC-OC相比,68Ga-DOTA-TATE对NETs病灶的诊断灵敏度更高(60% vs. 96%),并且可以发现更多胰腺、胃肠道及骨的转移病灶,假阴性率也相对更低[11]68Ga-DOTA-TOC、 68Ga-DOTA-NOC 和68Ga-DOTA-TATE的配体均为奥曲肽衍生物,虽然3种显像剂对不同的SSTR亚型亲和力不同,但总体来说三者的诊断性能差异无统计学意义[12]。在NETs的初始诊断中,68Ga-DOTA-TOC、68Ga-DOTA-NOC、68Ga-DOTA-TATE PET显像的总体灵敏度为91%(95%CI,85%~94%)、特异度为94%(95%CI,86%~98%)。在分期和再分期中,68Ga-DOTA-TOC、68Ga-DOTA-NOC、68Ga-DOTA-TATE PET显像对原发或转移性病灶的诊断灵敏度为78.3%~100%、特异度为83%~100%[13]68Ga-DOTA-LAN主要与SSTR3和SSTR4结合,与SSTR2的亲和力较低[14],而NETs以表达SSTR2为主。因此,68Ga-DOTA-LAN PET在NETs诊断和分期方面的价值不如68Ga-DOTA-TOC。对68Ga-DOTA-TOC摄取不佳或不摄取的NETs,可考虑选择68Ga-DOTA-LAN PET显像[15]

      另一类68Ga-SSA是以6-氨基-1,4-二氮杂三乙酸酯(6-amino-1,4-diazepine triacetate,DATA)为螯合剂,如68Ga-DATA-TOC。DATA是一种新型螯合剂,其与68Ga标记的SSTR显像剂结合具有更高的稳定性[16]68Ga-DATA-TOC的合成更为简便、经济和高效,具有作为68Ga-DOTA-TOC有效安全替代品的潜力。

    • 64Cu作为一种半衰期长(12.7 h)、低正电子能量(Eβ+max=0.653 MeV)的放射性核素,在肿瘤显像和靶向治疗中的应用价值受到越来越多的关注。其最大正电子能量远低于68Ga(Eβ+max=1.899 MeV),可具有更高的PET空间分辨率。64Cu标记的SSA显像剂主要有3种,即64Cu-DOTA-TATE、64Cu-1,4,8,11-四氮杂环十四烷-N,N′,N″,N′″-四乙酸-奥曲肽(64Cu-1,4,8,11-tetraazacyclotetradecane-N,N′,N″,N′″-tetraacetic acid-octreotide,64Cu-TETA-OC)和64Cu-5-(8-甲基-3,6, 10,13,16,19-六氮杂-双环[6,6,6]二十烷-1-基氨基)-5-氧戊酸-酪氨酸-奥曲肽[64Cu-5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6,6,6]icosan-1-ylamino)-5-oxopentanoic acid-Tyr3-OC,64Cu-SAR-TATE]。

      临床初步试验结果显示,64Cu-TETA-OC的血液清除率和膀胱排泄率均较111In-DTPA-OC更高,且显像效果更好,可检测到更多NETs转移灶[17]64Cu-DOTA-TATE和68Ga-DOTA-TOC的灵敏度相当,但64Cu-DOTA-TATE检测到病灶的真阳性率更高[18]64Cu-DOTA-TATE注射后1 h和3 h的PET显像比较结果显示,两个时间点检测到的病灶数差异无统计学意义[19],较宽的显像时间窗提高了其用于NETs显像的便利性和灵活性。148 MBq(4.0 mCi)的64Cu-DOTA-TATE即可获得具有诊断质量的PET/CT显像,其灵敏度和特异度均较高(分别为100%和96.8%)[20]。该剂量可作为后续Ⅲ期临床研究的最佳注射剂量。64Cu-SAR复合物较64Cu-DOTA的生物性状更稳定[21]64Cu-SAR-TATE的临床试验结果表明,该显像剂具有良好的安全性[22]。其在注射后4 h或24 h的显像与68Ga-DOTA-TATE注射后1 h的显像相比,显示出的病灶数差异无统计学意义[22],这不仅提高了显像时间的灵活性,也增加了64Cu-SAR-TATE在核素治疗前多时间点剂量测定的可能性。

    • 已用于NETs临床研究的18F标记的氟化物主要有4类,包括18F-氟丙烯酸-4-硝基酯(18F-fluoropropionic acid-4-nitrophenyl ester,18F-FP)、18F-氟化铝 (18F-AlF2+)、18F-氟甲烷(18F-fluoroethane,18F-FEA)和18F-硅基氟化物(18F-silicon-based fluoride acceptor,18F-SiFA)。

      Nα-(1-脱氧-D-果糖基)-Nε-(2-18F-氟丙酰基)-Lys0-Tyr3-奥曲肽酸[ Nα-(1-deoxy-D-fructosyl)-Nε-(2-18F-fluoropropionyl)-Lys0-Tyr3-octreotade,18F-FP-Gluc-TOCA]的肿瘤摄取及血液清除速率快,在注射时间(16±9) min和(34±12) min时,肿瘤与本底的比率分别高达80%和90%[23]。但由于18F-FP-Gluc-TOCA的合成过程复杂,制备时间较长(3 h),且放射化学产率有限(20%~30%),限制了其在临床中的应用。18F-氟乙基三唑-酪氨酸3-奥曲肽( 18F-fluoroethyltriazole-Tyr3-octreotide,18F-FET-βAG-TOCA)的临床研究结果已证实其安全性和人体可耐受性,在NETs转移的主要部位均显示出较高的肿瘤摄取以及T/NT[24]。与68Ga-DOTA-TATE相比,18F-FET-βAG-TOCA显像的灵敏度更高(92.8% vs. 87.5%)[25]18F-Al-1, 4, 7-三氮杂环壬烷-1, 4, 7-三乙酸-奥曲肽( 18F-Al-1, 4, 7-triazacyclononane-1, 4, 7-triacetate-octreotide,18F-AlF-NOTA-OC)在NETs患者体内表现出良好的生物学分布特性、动力学特性和肿瘤靶向性,其肝脏生理性摄取低,可发现更多肝脏病变[26]。新型显像剂18F-对二叔丁基氟硅基-苯甲醛-奥曲肽酸[18F-p-(di-tert-butylfluorosilyl)benzaldehyde-octreotade,18F-SiFAlin-TATE]在人体内的生物学分布与68Ga-DOTA-TOC基本类似,大多数NETs病灶对18F-SiFAlin-TATE摄取较高,特别是NETs的常见转移部位对18F-SiFAlin-TATE的摄取均高于68Ga-DOTA-TOC,如肝脏(SUVmax:18.8±8.0 vs. 12.8±5.6)、淋巴结(SUVmax:23.8±20.7 vs. 17.4±16.1)和骨转移灶(SUVmax:16.0±10.1 vs. 10.3±5.7)[27]18F-SSA的临床研究尚处于早期阶段,需要更多前瞻性Ⅱ/Ⅲ期临床研究检验其诊断性能。

    • 44Sc是用于PET显像的新型放射性核素,可通过回旋加速器大量获得,且其具有良好的物理性质(T1/2=3.97 h;Eβ+max=0.623 MeV)。44Sc-DOTA-TOC在临床试验中显示出良好的显像特性,延迟扫描可检测到非常小的病灶[28]。此外,47Sc是适用于核素治疗的放射性核素之一,44Sc标记的显像剂可与47Sc标记的治疗药物联合用于NETs的治疗前显像、治疗方案制定及疗效监测,实现NETs的诊疗一体化。但目前相关研究甚少,44Sc-SSA在NETs中的诊断价值还需更多的临床试验结果证实。

    • 90Y标记的SSA已用于NETs的临床治疗,但由于90Y是一种发射纯β-射线的核素,无法直接用于显像。以往多用111In-DTPA-OC进行90Y-SSA核素治疗前显像和剂量估算,但 111In-SSA与90Y-SSA在体内的生物学分布不同。理论上,86Y-SSA是90Y-SSA治疗前显像更为理想的显像剂。相较于111In-DTPA-OC SPECT,86Y-DOTA-TOC PET的图像质量更高,能更精确地估算90Y-SSA核素治疗所需剂量[29-30]。但86Y也存在一定的局限性,除β+射线外,86Y还发射0.628 MeV(32.6%)、0.703 MeV(15.4%)和1.077 MeV(82.5%)等多种额外的高能γ射线,导致显像背景噪音增强,空间分辨率降低,限制了其在临床中的实用性[29-30]

    • SSTR显像领域另一个重要的发展是SSTR拮抗剂的研发。SSTR拮抗剂比SSTR激动剂具有更多的受体结合位点,与受体结合后不易解离,可能更适合作为SSTR显像的探针[31]。BASS[p-NO2-Phe-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-Cys)D-Tyr-NH2]是第1代SSTR2拮抗剂,可与SSTR2特异性结合[32]111In-DOTA-BASS对NETs病灶的检测性能优于111In-DTPA-OC,并且肾脏吸收更低[33]。第2代SSTR2拮抗剂有JR11(Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2)和LM3[p-Cl-Phe-cyclo(D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys)D-Tyr-NH2][34],以68Ga 标记的68Ga-1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸(1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid,NODAGA)-JR11,即68Ga-OPS202和68Ga-DOTA-JR11常用于临床研究。

      虽然68Ga-OPS202和68Ga-DOTA-JR11对SSTR2的亲和力均较68Ga-DOTA-TATE低,但肿瘤对二者的摄取均高于68Ga-DOTA-TATE[31]68Ga-OPS202血液清除速率快,背景活性低,尤其是在肝脏和胃肠道中,表现出良好的生物学分布和显像特性[35]。在胃肠道和胰腺NETs患者中,68Ga-DOTA-TOC比68Ga-OPS202具有更高的T/NT,对肝转移瘤的检出率更高,基于病灶的整体灵敏度也更高:肽剂量50 μg和15 μg的68Ga-OPS202灵敏度分别为94%和88%,而肽剂量15 μg的68Ga-DOTA-TOC灵敏度为59%(P<0.001)[36]68Ga-DOTA-JR11相较于68Ga-DOTA-TATE可检测到更多的肝转移灶(552 vs. 365),但对骨转移的检出率低于68Ga-DOTA-TATE(158 vs. 388),而两者对原发灶和淋巴结转移灶的检出率差异无统计学意义[37]。Huo等[38]的前瞻性研究对68Ga-NODAGA-LM3和68Ga-DOTA-LM3在16例高分化NETs患者中应用的安全性和生物学分布情况进行评估,结果显示,68Ga-DOTA-LM3组中2例患者出现恶心和呕吐症状,其余14例患者的PET显像显示,两种示踪剂均有较高的肿瘤摄取和滞留。但正常组织对68Ga-DOTA-LM3的摄取较68Ga-NODAGA-LM3更低,前者检测到的病灶数略多于后者(20/38 vs. 18/38)。68Ga-NODAGA-LM3和68Ga-DOTA-LM3在NETs中的诊断价值仍需要进一步的研究来评估。

      随着更多放射性核素标记的SSTR拮抗剂药物进入临床研究阶段,放射性核素标记的SSTR拮抗剂也将具有更为广泛的应用前景,待扩大临床样本量进一步证实。

    • 多种靶向SSTR的显像剂已得到成功研发,为临床精准诊治NETs提供了更多选择。111In、68Ga、64Cu和18F等放射性核素标记的SSTR受体激动剂在NETs诊断方面表现出较高的灵敏度和特异度,显著提高了NETs病灶的检出率,其中111In-DTPA-OC和68Ga-DOTA-TATE已获美国FDA批准应用于临床。另外,68Ga标记的SSTR拮抗剂在早期临床研究中显示出良好的生物学特性和肿瘤靶向性,有可能成为更有前景的显像剂类型。更重要的是,治疗核素(如177Lu)标记的SSA对NETs疗效显著,68Ga-SSA、177Lu-SSA已可应用于临床实现患者诊疗的一体化。随着更多高特异度和高灵敏度的显像剂陆续得到研发,NETs患者的临床管理也将不断走向个体精准化。

      利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

      作者贡献声明 冯柳负责文献资料的整理、综述的撰写;吴爽、金晨涛负责综述的修改;田梅负责命题的提出、综述的审阅。

参考文献 (38)

目录

    /

    返回文章
    返回