多参数磁共振成像在前列腺癌中的应用进展

夏标 吴海璐 张天富 李雪娜

引用本文:
Citation:

多参数磁共振成像在前列腺癌中的应用进展

    通讯作者: 夏标, 15969507500@163.com

Progress in the application of multiparameter magnetic resonance imaging in prostate cancer

    Corresponding author: Biao Xia, 15969507500@163.com ;
  • 摘要: 前列腺癌(PCa)的发病率位居全球男性恶性肿瘤的第二位,随着人口老龄化进程的加快,其发病率和病死率也在逐年上升。若PCa不被及早发现、检测、诊断,将严重危害老年男性的健康。自前列腺影像报告与数据系统V2.1版指南更新了多参数磁共振成像(mpMRI)序列及评分新规范以后,mpMRI在PCa中的应用前景更为广泛。多项研究报道了mpMRI在PCa活检前及指导靶向活检、主动监测、根治性前列腺切除术后局部复发及转移中的应用价值,但mpMRI评估PCa仍然存在局限性。笔者主要就mpMRI关键序列及评分的新规范、mpMRI评估PCa的应用进展、当前的局限性及潜在的解决方案展开综述。
  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394−424. DOI: 10.3322/caac.21492.
    [2] Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging-reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16−40. DOI: 10.1016/j.eururo.2015.08.052.
    [3] Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340−351. DOI: 10.1016/j.eururo.2019.02.033.
    [4] Turkbey B, Brown AM, Sankineni S, et al. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer[J]. CA Cancer J Clin, 2016, 66(4): 326−336. DOI: 10.3322/caac.21333.
    [5] Beyer T, Schlemmer HP, Weber MA, et al. PI-RADS 2.1-image interpretation: the most important updates and their clinical implications[J]. Rofo, 2021, 193(7): 787−796. DOI: 10.1055/a-1324-4010.
    [6] Lawrence EM, Warren AY, Priest AN, et al. Evaluating prostate cancer using fractional tissue composition of radical prostatectomy specimens and pre-operative diffusional kurtosis magnetic resonance imaging[J/OL]. PLoS One, 2016, 11(7): e0159652[2020-12-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159652. DOI: 10.1371/journal.pone.0159652.
    [7] Muller BG, Shih JH, Sankineni S, et al. Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging[J]. Radiology, 2015, 277(3): 741−750. DOI: 10.1148/radiol.2015142818.
    [8] Hansford BG, Karademir I, Peng YH, et al. Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate[J]. Acad Radiol, 2014, 21(5): 569−577. DOI: 10.1016/j.acra.2014.01.013.
    [9] Cohen RJ, Shannon BA, Phillips M, et al. Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features[J]. J Urol, 2008, 179(5): 1762−1767. DOI: 10.1016/j.juro.2008.01.017.
    [10] 王良, Li QB, Alberto VH. 前列腺影像报告和数据系统(PI-RADS V2.1)解读[J]. 中华放射学杂志, 2020, 54(4): 273−278. DOI: 10.3760/cma.j.cn112149-20190429-00382.
    Wang L, Li QB, Alberto VH. China interpretation of prostate imaging-reporting and data system (PI-RADS V2.1) guideline for prostate cancer management[J]. Chin J Radiol, 2020, 54(4): 273−278. DOI: 10.3760/cma.j.cn112149-20190429-00382.
    [11] Fenton JJ, Weyrich MS, Durbin S, et al. Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the us preventive services task force[J]. JAMA, 2018, 319(18): 1914−1931. DOI: 10.1001/jama.2018.3712.
    [12] Purysko AS, Baroni RH, Giganti F, et al. PI-RADS Version 2.1: a critical review, from the AJR special series on radiology reporting and data systems[J]. AJR Am J Roentgenol, 2021, 216(1): 20−32. DOI: 10.2214/AJR.20.24495.
    [13] Barrett T, Padhani AR, Patel A, et al. Certification in reporting multiparametric magnetic resonance imaging of the prostate: recommendations of a UK consensus meeting[J]. BJU Int, 2021, 127(3): 304−306. DOI: 10.1111/bju.15285.
    [14] Scialpi M, Aisa MC, D'Andrea A, et al. Simplified prostate imaging reporting and data system for biparametric prostate MRI: a proposal[J]. AJR Am J Roentgenol, 2018, 211(2): 379−382. DOI: 10.2214/AJR.17.19014.
    [15] Dominguez C, Plata M, Cataño JG, et al. Diagnostic accuracy of multiparametric magnetic resonance imaging in detecting extracapsular extension in intermediate and high-risk prostate cancer[J]. Int Braz J Urol, 2018, 44(4): 688−696. DOI: 10.1590/S1677-5538.IBJU.2016.0485.
    [16] de Rooij M, Hamoen EHJ, Witjes JA, et al. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis[J]. Eur Urol, 2016, 70(2): 233−245. DOI: 10.1016/j.eururo.2015.07.029.
    [17] Grivas N, Hinnen K, de Jong J, et al. Seminal vesicle invasion on multi-parametric magnetic resonance imaging: correlation with histopathology[J]. Eur J Radiol, 2018, 98: 107−112. DOI: 10.1016/j.ejrad.2017.11.013.
    [18] Hu X, Yang ZQ, Shao YX, et al. MRI-targeted biopsy versus standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis of randomized controlled trials[J/OL]. Abdom Radiol (NY), 2020, 45(10): 3283−3292[2020-12-19]. https://link.springer.com/article/10.1007/s00261-019-02370-z. DOI: 10.1007/s00261-019-02370-z.
    [19] Xiang JJ, Yan HQ, Li JF, et al. Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis[J/OL]. World J Surg Oncol, 2019, 17(1): 31[2020-12-19]. https://wjso.biomedcentral.com/articles/10.1186/s12957-019-1573-0. DOI: 10.1186/s12957-019-1573-0.
    [20] Tu X, Liu ZH, Chang TC, et al. Transperineal magnetic resonance imaging-targeted biopsy may perform better than transrectal route in the detection of clinically significant prostate cancer: systematic review and meta-analysis[J]. Clin Genitourin Cancer, 2019, 17(5): e860–e870. DOI: 10.1016/j.clgc.2019.05.006.
    [21] Schouten MG, van der Leest M, Pokorny M, et al. Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men?[J]. Eur Urol, 2017, 71(6): 896−903. DOI: 10.1016/j.eururo.2016.12.006.
    [22] Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer[J]. JAMA, 2015, 313(4): 390−397. DOI: 10.1001/jama.2014.17942.
    [23] Nassiri N, Beeder L, Nazemi A, et al. Step-by-Step: Fusion-guided prostate biopsy in the diagnosis and surveillance of prostate cancer[J]. Int Braz J Urol, 2019, 45(6): 1277−1278. DOI: 10.1590/S1677-5538.IBJU.2018.0886.
    [24] Benelli A, Vaccaro C, Guzzo S, et al. The role of MRI/TRUS fusion biopsy in the diagnosis of clinically significant prostate cancer[J]. Ther Adv Urol, 2020, 12: 1756287220916613. DOI: 10.1177/1756287220916613.
    [25] Felker ER, Wu J, Natarajan S, et al. Serial magnetic resonance imaging in active surveillance of prostate cancer: incremental value[J]. J Urol, 2016, 195(5): 1421−1427. DOI: 10.1016/j.juro.2015.11.055.
    [26] Moore CM, Petrides N, Emberton M. Can MRI replace serial biopsies in men on active surveillance for prostate cancer?[J]. Curr Opin Urol, 2014, 24(3): 280−287. DOI: 10.1097/MOU.0000000000000040.
    [27] Hsiang W, Ghabili K, Syed JS, et al. Outcomes of serial multiparametric magnetic resonance imaging and subsequent biopsy in men with low-risk prostate cancer managed with active surveillance[J/OL]. Eur Urol Focus, 2021, 7(1): 47−54[2022-01-19]. https://www.eu-focus.europeanurology.com/article/S2405-4569(19)30148-8/fulltext. DOI: 10.1016/j.euf.2019.05.011.
    [28] Magnetta MJ, Casalino D, Heller MT. Imaging assessment of local recurrence of prostate cancer after radical prostatectomy[J/OL]. Abdom Radiol (NY), 2020, 45(12): 4073−4083. DOI: 10.1007/s00261-020-02505-7.
    [29] Hernandez D, Salas D, Giménez D, et al. Pelvic MRI findings in relapsed prostate cancer after radical prostatectomy[J/OL]. Radiat Oncol, 2015, 10: 262[2020-12-19]. https://ro-journal.biomedcentral.com/articles/10.1186/s13014-015-0574-6. DOI: 10.1186/s13014-015-0574-6.
    [30] Kitajima K, Hartman RP, Froemming AT, et al. Detection of local recurrence of prostate cancer after radical prostatectomy using endorectal coil MRI at 3 T: addition of DWI and dynamic contrast enhancement to T2-weighted MRI[J]. AJR Am J Roentgenol, 2015, 205(4): 807−816. DOI: 10.2214/AJR.14.14275.
    [31] Roy C, Foudi F, Charton J, et al. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy[J]. AJR Am J Roentgenol, 2013, 200(4): W361−W368. DOI: 10.2214/AJR.12.9106.
    [32] Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012[J]. Eur Radiol, 2012, 22(4): 746−757. DOI: 10.1007/s00330-011-2377-y.
    [33] Radzina M, Tirane M, Roznere L, et al. Accuracy of 68Ga-PSMA-11 PET/CT and multiparametric MRI for the detection of local tumor and lymph node metastases in early biochemical recurrence of prostate cancer[J/OL]. Am J Nucl Med Mol Imaging, 2020, 10(2): 106−118[2020-12-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218697/.
    [34] Couñago F, Recio M, Maldonado A, et al. Evaluation of tumor recurrences after radical prostatectomy using 18F-Choline PET/CT and 3T multiparametric MRI without endorectal coil: a single center experience[J]. Cancer Imaging, 2016, 16(1): 42. DOI: 10.1186/s40644-016-0099-8.
    [35] Chatterjee A, Thomas S, Oto A. Prostate MR: pitfalls and benign lesions[J/OL]. Abdom Radiol (NY), 2020, 45(7): 2154−2164[2020-12-19]. https://link.springer.com/article/10.1007/s00261-019-02302-x. DOI: 10.1007/s00261-019-02302-x.
    [36] Müller S, Lilleaasen G, Sand TE, et al. Poor reproducibility of PIRADS score in two multiparametric MRIs before biopsy in men with elevated PSA[J]. World J Urol, 2018, 36(5): 687−691. DOI: 10.1007/s00345-018-2252-4.
    [37] Srigley JR. Benign mimickers of prostatic adenocarcinoma[J]. Mod Pathol, 2004, 17(3): 328−348. DOI: 10.1038/modpathol.3800055.
    [38] Chatterjee A, Okdemir S, Gallan AJ, et al. Multiparametric MRI features and pathologic outcome of wedge-shaped lesions in the peripheral zone on T2-weighted images of the prostate[J]. AJR Am J Roentgenol, 2019, 212(1): 124−129. DOI: 10.2214/AJR.18.19742.
    [39] Puech P, Randazzo M, Ouzzane A, et al. How are we going to train a generation of radiologists (and urologists) to read prostate MRI?[J]. Curr Opin Urol, 2015, 25(6): 522−535. DOI: 10.1097/MOU.0000000000000217.
  • [1] 马彦云张辉 . 磁共振体素内不相干运动扩散加权成像的原理及应用进展. 国际放射医学核医学杂志, 2016, 40(6): 469-473. doi: 10.3760/cma.j.issn.1673-4114.2016.06.013
    [2] 商明艳张丽萌李坤李文 . 磁共振扩散峰度成像在肝脏病变中的研究进展. 国际放射医学核医学杂志, 2020, 44(4): 243-247. doi: 10.3760/cma.j.cn121381-201902002-00015
    [3] 温健男杨亲亲程超左长京68Ga-PSMA-11 PET/CT代谢体积参数在不同风险分层的初诊前列腺癌患者中的差异研究. 国际放射医学核医学杂志, 2021, 45(12): 741-749. doi: 10.3760/cma.j.cn121381-202009005-00113
    [4] 李晓旭杨光杰张琦夏连爽王振光 . 多参数MRI特征和临床因素与前列腺癌术后生化复发风险的相关性分析. 国际放射医学核医学杂志, 2022, 46(11): 649-654. doi: 10.3760/cma.j.cn121381-202112008-00240
    [5] 刘健萍贺小红金亚彬林胜强高明勇李斌 . 超高b值弥散加权联合T2加权序列诊断外周带前列腺癌的价值. 国际放射医学核医学杂志, 2020, 44(5): 303-308. doi: 10.3760/cma.j.cn121381-201910023-00036
    [6] 刘辰杨悦张雪宁李小东 . MRI和1997年版Partin表对前列腺癌病理特征预测准确性的对比研究. 国际放射医学核医学杂志, 2015, 39(2): 124-128. doi: 10.3760/cma.j.issn.1673-4114.2015.02.005
    [7] 杨晓棠杨继虎杜笑松张建新 . 磁共振扩散加权成像及动态增强MRI在乳腺病变中的应用价值. 国际放射医学核医学杂志, 2011, 35(3): 189-193. doi: 10.3760/cma.j.issn.1673-4114.2011.03.014
    [8] 李骁扬田野 . 动态增强磁共振成像在抗肿瘤血管药物早期临床试验中的应用. 国际放射医学核医学杂志, 2014, 38(5): 309-314. doi: 10.3760/cma.j.issn.1673-4114.2014.05.008
    [9] 王冬艳苏成海 . PET、PEP-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展. 国际放射医学核医学杂志, 2011, 35(6): 339-346. doi: 10.3760,cma.j.issn.1673-4114.2011.06.005
    [10] 王冬艳苏成海 . PET、PET-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展. 国际放射医学核医学杂志, 2011, 35(6): 339-346. doi: 10.3760/cma.j.issn.1673-4114.2011.06.005
  • 加载中
计量
  • 文章访问数:  4171
  • HTML全文浏览量:  3147
  • PDF下载量:  8
出版历程
  • 收稿日期:  2020-12-20
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-01-25

多参数磁共振成像在前列腺癌中的应用进展

    通讯作者: 夏标, 15969507500@163.com
  • 昆明市呈贡区人民医院放射科,昆明 650500

摘要: 前列腺癌(PCa)的发病率位居全球男性恶性肿瘤的第二位,随着人口老龄化进程的加快,其发病率和病死率也在逐年上升。若PCa不被及早发现、检测、诊断,将严重危害老年男性的健康。自前列腺影像报告与数据系统V2.1版指南更新了多参数磁共振成像(mpMRI)序列及评分新规范以后,mpMRI在PCa中的应用前景更为广泛。多项研究报道了mpMRI在PCa活检前及指导靶向活检、主动监测、根治性前列腺切除术后局部复发及转移中的应用价值,但mpMRI评估PCa仍然存在局限性。笔者主要就mpMRI关键序列及评分的新规范、mpMRI评估PCa的应用进展、当前的局限性及潜在的解决方案展开综述。

English Abstract

  • 前列腺癌(prostate cancer,PCa)的全球发病率约为4.0%,位居全球男性恶性肿瘤的第二位,其侵袭性位居第五位[1]。随着人口老龄化进程的加快,PCa的发病率和病死率也在逐年上升。因此,早期检测、诊断PCa及评估其复发、转移尤为重要。多参数MRI(multiparametric MRI,mpMRI)是评估PCa的常用影像学方法,其在常规T1加权成像(T1-weighted imaging,T1WI)、T2加权成像(T2-weighted imaging,T2WI)序列的基础上结合扩散加权成像(diffusion weighted imaging,DWI)、动态对比增强磁共振成像(dynamic contrast enhanced MRI, DCE-MRI)和(或)MRI波谱等功能成像序列来反应前列腺组织的功能、生化代谢等方面的改变[2]。笔者主要就mpMRI的主要序列、评分的新规范及其在PCa中的应用展开综述。

    • 前列腺影像报告与数据系统(prostate imaging report and data system,PI-RADS)V2.1版指南[3]旨在简化评分标准。其中,DWI、T2WI仍然是外周带、移行带评分的主导序列。PI-RADS V2.1版指南中最重要的更新是增加了中央带和前纤维肌肉基质(anterior fibromuscular stroma,AFMS)评分的新规范,以及强调了高b值(≥1400 s/mm2)DWI的应用[3]

    • mpMRI的T2WI序列可以显示外周带、尿道周围腺体区、前列腺包膜等解剖结构,勾画可疑病变,确定病变与前列腺包膜、神经血管束等组织的关系[4]。为避免部分容积效应,如评估前列腺增生结节低信号包膜的完整性,PI-RADS V2.1版指南规定T2WI图像采集应包括轴面或垂直于前列腺长轴的斜轴面,以及至少选择1个正交的矢状面和(或)冠状面[3]。有文献报道,斜轴面有助于与经直肠前列腺超声检查(transrectal utrasonography,TRUS)引导下的活检图像融合[5]

    • 因PCa组织细胞密度增大(细胞体积小、核浆比大及细胞外间质成分少),导致细胞膜阻碍水分子运动的作用增强,因此,DWI相对扩散受限[6]。DWI一般用b值来反映水分子扩散敏感程度的变化,b值越大,相对扩散受限越明显。PI-RADS 2.1版指南推荐使用50~100、800~1000 s/mm2两组b值用于表现扩散系数(appraent diffusion coefficient,ADC)值的计算[3]。但鉴于b值在50~100 s/mm 2时的技术要求较0 s/mm 2时更高,为及时避免b值>1000 mm2时发生扩散峰度效应影响ADC值计算的缘故,故PI-RADS 2.1版指南[3]推荐使用低b值(0~100 s/mm 2)和中间b值(800~1000 s/mm2)。但是,因高b值(≥1400 s/mm2)增加了肿瘤组织与正常前列腺组织之间的对比度及显著提高了PCa的检出率[7],故也被PI-RADS 2.1版指南[3]强烈推荐。

    • 与DCE-MRI中的二维T1WI序列相比,三维T1WI序列具有更高的空间分辨率。另外,因PI-RADS 2.0版指南推荐的时间分辨率为10 s(首选<7 s),会影响图像空间分辨率及造成图像质量的损坏,因此,PI-RADS 2.1版指南[3]推荐使用三维T1WI序列,并将时间分辨率修改为≤15 s。

    • 中央带属于腺体组织,突出于前列腺底部背侧,V形围绕射精管,紧邻移行带向下延伸,尖端止于精阜。因此,mpMRI很难将中央带与移行带区分开,二者常合称为中央腺体。但鉴于其V形结构的特点,一般认为mpMRI冠状面更有助于中央带的识别[8]。正常中央带在T2WI和ADC图上表现为双侧对称性的低信号,DWI则表现为轻度高信号。由于中央带与精囊腺组织非常相似、精囊腺癌发生率极低及两者之间的毗邻的解剖关系,因此,原发于中央带的PCa亦极罕见(<5%),且常浸润精囊腺[9]。临床上中央带的PCa常不起源于中央带,通常为外周带或移行带的PCa延伸所致,其在T2WI和ADC图上呈不对称的低信号肿块、DWI呈高信号,DCE-MRI呈早期强化 [3]

    • AFMS属于非腺体组织,由垂直延伸的平滑肌肉束和结缔组织组成,覆盖于前列腺腹侧表面,延续为膀胱平滑肌。因此,AFMS在T2WI、DWI、ADC图上均表现为双侧对称性的新月形低信号,DCE-MRI早期及延迟期均无强化。PCa并非起源于AFMS,且很难与前列腺腹侧的PCa区别开。因此,PI-RADS V2.1版指南[3]推荐根据最可能起源的区域(外周带或移行带)选择AFMS病变的评估标准。

    • 移行带位于前列腺中部、底部的前内侧,包绕近段尿道,T2WI为其评分的主导序列。PI-RADS V2.1版指南规定了其新的评分标准:1分为正常移行带、典型结节;2分为非典型结节;3分为边缘模糊的不均质信号或不符合2、4、5分的标准;4分为凸透镜状、边界不清晰、均质、中等低信号强度;5分的评分标准为凸透镜状、边界不清晰、均质、中等低信号强度,但病灶最大径≥1.5 cm或有明确的前列腺包膜外侵犯[3, 10]。3~5分的评分标准与PI-RADS V2.0版指南一致,无变化。

    • 因PI-RADS V2.0版指南中DWI评为2分的病灶在ADC图上定义为模糊低信号,然而这些模糊低信号在高b值DWI上也会呈不显著高信号表现,与DWI评为3分的病灶在高b值DWI为轻、中度高信号存在一致性而很难鉴别[3.10],故在PI-RADS V2.1版指南中规定了新的评分标准。其中,DWI评为2分的病灶在ADC图上呈线性、楔形低信号和(或)高b值DWI线性、楔形不显著高信号;评为3分的病灶在ADC图上呈局灶性低信号和(或)高b值DWI上呈局灶性高信号,以及可能在ADC图上呈显著低信号或在高b值DWI上呈显著高信号;评分1、4、5分的标准无变化 [3]

    • 在PI-RADS V2.1版指南[3]中,DCE-MRI对阳性病灶的评估标准不变,但是对阴性病灶的评估标准规定为前列腺病灶在DCE-MRI中无早期强化或弥漫性多病灶强化,强化的病灶在T2WI和(或)DWI序列上未见异常。

    • 传统的前列腺特异性抗原(prostate specific antigen,PSA)检测、直肠指诊往往会出现假阳性结果及过度诊断[11],而mpMRI筛查PCa的特异性、阴性预测值均高于PSA,行mpMRI检查可使27%的患者避免活检[12]。因此,英国共识会议和国际指南[13]推荐活检前行mpMRI。活检前行mpMRI的适应证主要包括:不明原因的PSA水平升高;既往双参数MRI检查结果为阴性,但仍高度怀疑临床显著性PCa(clinically significant PCa,csPCa),再次检查可优选mpMRI;存在可能影响DWI图像质量的因素(如髋关节植入物)、有PCa家族史及遗传倾向的患者等[9]

      活检前行mpMRI检查主要用于PCa的风险分层、包膜外侵犯及精囊腺受侵评估。活检前PCa的风险分层评估,PI-RADS V2.0版指南推荐行mpMRI检查评分在1、2分的病灶不需活检,3分的病灶可能需要活检,4、5分的病灶推荐活检[2]。3分的病灶的临床治疗需结合病灶的体积,体积<0.5 cm3的病灶应进行PSA随访和年度mpMRI或双参数MRI检查,体积>0.5 cm3的病灶应接受活检[5, 14]。活检前通常在T2WI序列上对PCa包膜外侵犯进行诊断,其直接征象为前列腺包膜与周围脂肪界线不清,间接征象包括包膜不规则隆起、双侧血管神经束增厚、肿瘤包膜接触长度>10 mm、直肠前列腺角消失等[13]。Dominguez等[15]的研究结果显示,mpMRI诊断包膜外侵犯的特异度为90.9%、阴性预测值为74.1%,而灵敏度仅为54.9%。但也有研究报道,采用3.0 T、直肠内线圈联合相控阵线圈的mpMRI可将诊断包膜外侵犯的灵敏度提高至68.0%[16]。活检前采用T2WI序列诊断精囊腺受侵,直接征象表现为前列腺底部局灶性或弥漫性低信号延伸至精囊,DWI序列上扩散受限,DCE-MRI序列上精囊腺内异常对比强化,间接征象可有前列腺精囊夹角消失。Grivas等[17]采用T2WI、DWI、DCE-MRI序列对PCa精囊腺受侵进行诊断分析,结果显示mpMRI诊断精囊腺受侵的灵敏度为75.9%,特异度为94.7%、阴性预测值为97.0%,准确率为92.7%,预测模型中AUC为0.884。

    • 目前,穿刺活检是诊断PCa及其术前类型的主要手段。初次活检,mpMRI可提高PCa及csPCa的检出率;对于既往活检结果为阴性而临床仍持续怀疑PCa的患者需要再次进行活检,mpMRI可检出多达40%的遗漏病例[18]。mpMRI靶向活检的检出率可能与穿刺途径、部位有关[19-21]。经会阴进行前列腺穿刺活检在感染、直肠出血方面的风险较经直肠低,且在活检后可使患有糖尿病、前列腺炎等容易感染的患者避免败血症和严重感染的发生,其对csPCa的检出率(91.3%)也高于经直肠(72.2%),但更易出现疼痛[19-20]。Schouten等[21]认为,mpMRI靶向活检诊断csPCa漏诊的部位主要位于前列腺背外侧(58.0%),其次位于前列腺尖部(37.0%)。

      mpMRI/TRUS融合活检是一种新型靶向定位技术,其可使csPCa的检出率提高30.0%[22]。该方法通过实时获取三维TRUS图像与mpMRI弹性融合,将活检轨迹可视化并标记可疑病变靶向活检[23]。Benelli等[24]的研究结果表明,mpMRI/TRUS融合活检对评分为3、4、5分csPCa的检出率分别为17.2%、44.9%、73.4%。目前,mpMRI/TRUS融合活检技术在国内开展较少,如何高效利用,还有待进一步的大样本研究。

    • 主动监测是临床上对低危PCa患者动态监测的重要方法之一,其意义在于初诊时对低危PCa患者不选择治疗,而是进行密切随访及长期监测,期间有进展和(或)包膜外侵犯时,再积极进行治疗。mpMRI评估低危PCa为进展的定义是主动监测期间PI-RADS评分增加,病灶数目增加和(或)体积成倍增大[25]。低危PCa主动监测期间仅凭T2WI序列评估PCa>0.2 cm3病灶的准确率仅为20.0%,结合DWI、DCE-MRI等功能序列可明显提高准确率[26]。Moore等[26]研究发现,初次行mpMRI检查未发现病灶的低危PCa患者在主动监测第3年期间有20.0%的机会出现进展,初次行mpMRI检查发现病灶的低危PCa患者在第3年时有50.0%的可能出现进展。Hsiang等[27]将6年内至少2次采用mpMRI的T2WI、DWI、DCE-MRI序列行主动监测及随后接受活检的122例低危PCa患者纳入研究,结果表明,mpMRI评估PCa为进展与组织病理学检查结果为升级的相关性不大,其预测低危PCa组织病理学检查升级的灵敏度仅为41.3%、特异度为54.8%、阳性预测值为75.0%、阴性预测值为为22.2%;但若初次mpMRI评估PCa在4~5分时,可能预示组织病理学检查结果升级。因此,mpMRI在初次评估低危PCa未发现病灶时也需主动监测,若发现病灶尤其评分在4~5分时需高度重视,并积极接受活检进行组织病理学诊断。

    • RP是治愈PCa的重要方法之一,适用于可以完全切除的局部PCa或预期寿命>10年且不存在使手术可能复杂化的患者[28]。RP术后PCa局部复发部位最常见于膀胱尿道吻合口周围,其次位于精囊腺和膀胱后区,骨盆mpMRI是最有价值的影像学检查方法[29]。RP术后尽管PSA水平较低(0.2~2.0 ng/ml),但仍有15%~30%的男性患者PSA水平持续升高而发生生化复发 [4, 29]。Kitajima等[30]采用T2WI结合DWI、DCE-MRI序列对RP术后PSA不同水平的患者行mpMRI检查,研究结果显示,PSA水平<0.4 ng/ml、0.4~1.0 ng/ml、>1.0 ng/ml的RP术后局部复发病灶的检出率分别为76.5%~82.4%、60.0%~73.3%、80.0%~88.0%,采用T2WI结合DWI序列对于病灶最大径<10 mm、≥10 mm的RP术后局部复发病灶的检出率分别为25.0%~29.4%、27.9%~69.0%。Roy等[31]研究发现,单独T2WI序列评估RP术后局部复发的灵敏度为56.0%,而采用T2WI结合DWI、DCE-MRI序列可将灵敏度提高至94.0%。因此,欧洲泌尿生殖放射学会推荐mpMRI用于PSA水平较低且怀疑RP术后局部复发患者的评估[32]

      mpMRI评估RP术后盆腔淋巴结转移的灵敏度、特异度均低于PET/CT,但对骨盆骨转移,两者检出率的差异无统计学意义[33-34]。Radzina等[33]回顾性分析了32例均行68Ga-PSMA-11 PET/CT、mpMRI检查的RP术后局部淋巴结转移患者,结果显示,PET/CT的灵敏度为83.3%、特异度为80.0%、准确率为90.6%,而mpMRI的灵敏度为41.7%、特异度为94.4%、准确率为72.0%。Couñago等[34]应用mpMRI和18F-胆碱PET/CT评估38例RP术后生化复发的患者,结果显示,两者对骨盆骨转移的检出率分别为10.5%和7.9%,差异无统计学意义。

    • 尽管mpMRI评估PCa有诸多优势,但仍存在一些局限性:(1)PCa在T2WI序列上表现为低信号,与活检后前列腺出血、肉芽肿性前列腺炎和局灶性前列腺萎缩等一些前列腺良性病变低信号表现相似,且无特异性,鉴别诊断较困难;(2)临床医师诊断水平的一致性差。

    • 前列腺活检时,通常会损伤毛细血管导致出血。在损伤毛细血管的同时,前列腺会产生一种柠檬酸盐抗凝剂,从而导致沿针迹处长时间出血,出血病灶内脱氧血红蛋白、正铁血红蛋白横向驰豫时间缩短并存在顺磁敏感效应[35]。因此,活检后前列腺出血在T2WI序列上信号降低、在DWI序列上为稍高信号而呈局限性扩散受限表现,与PCa在T2WI序列上信号降低及DWI序列扩散受限表现相近而易被误诊。

    • 前列腺炎常引起外周带在T2WI序列上信号降低,可能与PCa难以鉴别。肉芽肿性前列腺炎是一种较罕见的良性炎性疾病,非特异性或继发于尿路感染、卡介苗治疗膀胱癌后引起的感染。临床上肉芽肿性前列腺炎血清PSA水平可升高或不升高,因此,常需行mpMRI检查来辅助诊断。但肉芽肿性前列腺炎外周带在T2WI序列上常表现为低信号,与PCa在T2WI序列上信号降低表现相近而易被误诊。

      局灶性前列腺萎缩经临床活检标本中常见的组织学诊断,最好发于外周带,其在T2WI序列上表现为楔形低信号,与PCa在T2WI序列上信号降低表现相近而易被误诊。

    • mpMRI评估PCa的另一局限性在于临床医师诊断水平的一致性差而出现误诊或漏诊。Müller等[36]分析了126例在不同机构接受过MRI/TRUS融合活检患者的评分一致性,结果Bland-Altman图显示医师诊断水平的一致性非常差,究其原因在于医师的诊断经验、医院的MRI设备及医师对mpMRI诊断标准的理解存在差异。

    • 活检后延迟6-8周行mpMRI检查,绝大多数患者在活检后前列腺出血已液化,且在T2WI序列上表现为高信号,容易与PCa鉴别。

    • 肉芽肿性前列腺炎的典型表现为外周带在T2WI序列上为弥漫性信号降低。对于外周带及>50%的前列腺腺体在T2WI序列上为弥漫性信号降低,可有助于其与PCa在T2WI序列上信号局限性降低进行鉴别[37]。但有时肉芽肿性前列腺炎表现不典型,外周带在T2WI序列上表现为低信号的局灶性硬结节及ADC值低,常被PI-RADS误评为4或5分,目前很难将其与PCa鉴别。

      局灶性前列腺萎缩的典型表现为外周带在T2WI序列上为楔形低信号,DWI序列上为中度扩散受限,DCE-MRI序列上为早期不强化或中度强化,但扩散受限及强化程度不如PCa[38]

    • 参加教育培训及结合机器学习对提高临床医师诊断水平的一致性可能会发挥重要作用。有研究报道,临床医师参加教育培训可以使mpMRI诊断PCa的准确率由培训前的49%~52%提高至64%~81%[39]。机器学习是利用大量数据进行学习及不断改进,其在PCa检测、侵袭性预测、局部分期中具有很好的应用前景,同时可提高医师诊断水平的一致性。但目前机器学习并未在国内PCa评估中广泛应用,也很难获得大量数据来验证。

      综上所述,mpMRI在PCa活检前及指导靶向活检、主动监测、RP术后局部复发及转移等方面的应用越来越重要,但也需重视其局限性。在评估PCa时,还应与前列腺良性病变相鉴别,如结合机器学习可能会在mpMRI诊断中更具优势。

      利益冲突 所有作者声明无利益冲突

      作者贡献声明 夏标负责命题的设计与起草、综述的撰写与修订;吴海璐负责综述最终版本的修订与审阅;张天富、李雪娜负责文献的查阅与分析

参考文献 (39)

目录

    /

    返回文章
    返回