Volume 44 Issue 2
Apr.  2020
Article Contents

Citation:

Factors of radiation dose rates and hospitalization days for papillary thyroid cancer patients with after first 131I therapy

  • Corresponding author: Wei Ouyang, oyw1963@sina.com
  • Received Date: 2019-09-26
  • Objective To explore the related factors affecting the reduction of radiation dose rate and to estimate the hospitalization days in papillary thyroid cancer (PTC) patients with postoperative after first 131I therapy. Methods A total of 167 patients with PTC were hospitalized and treated with iodine-131 from May 2015 to November 2018 at Zhujiang Hospital, Southern Medical University. The patients were divided into the high-dose group (63 cases) and the low dose-group (104 cases). The radiation dose rates of the two groups of patients at different time points were measured at a distance of 1 m, the required hospitalization isolation time was analyzed, and the factors related to the reduction in radiation dose rate were analyzed by using multiple linear regression method. Two independent samples nonparametric test and t-test were used to compare the differences between groups. Results After iodine-131 treatment for the first time, the radiation dose rate of the patients with PTC decreased exponentially with time, and the radiation dose rates of the high-dose group[(70.62± 34.45), 15.64 μSv/h] at 24 h and 48 h after iodine-131 treatment were significantly higher than those of the low-dose group [(11.27±5.13), 2.03 μSv/h] (t=−13.581, −7.952, both P < 0.01). Approximately 81.0% (51/63) and 90.5% (57/63) of the high-dose group were discharged after iodine-131 treatment for 48 h and 72 h, respectively. By contrast, 99% (103/104) of the low-dose group was discharged after iodine-131 treatment for 24 h. According to multiple linear regression analysis, the effects of iodine-131 dose, iodine uptake rate at 2 h on radiation dose rate at 24 h in the high dose group were statistically significant (F = 9.23, complex correlation coefficient R2 = 0.212, P < 0.01), and both iodine-131 dose and iodine uptake rate at 2 h had positive correlation with 24 h radiation dose rate. The effects of gender, iodine uptake rate at 24 h and residual thyroid volume (method 3) on radiation dose rate at 48 h in the high-dose group were statistically significant (F=34.45, complex correlation coefficient R2 = 0.622, P < 0.01), moreover the radiation dose rate at 48 h was positively correlated with iodine uptake rate at 24 h and residual thyroid volume, and negatively correlated with gender. The effects of iodine-131 dose and drinking water amount at 24 h on the radiation dose rate at 24 h in the low-dose group were statistically significant (F=12.76, complex correlation coefficient R2=0.186, P < 0.01), furthermore the radiation dose rate at 24 h in the low-dose group was positively correlated with iodine-131 dose, and negatively correlated with drinking water amount at 24 h. Conclusions After the first iodine-131 treatment for 24 h, the main factors influencing the reduction in the radiation dose rate of patients with PTC were the dose of iodine-131. The main factors influencing the reduction in radiation dose rate after 48 h were the iodine uptake rate of the thyroid at 24 h, the volume of the residual thyroid gland, and the gender of the patient. The mean hospitalization time in low dose group and high dose group was about 1 day and 2 days respectively.
  • 加载中
  • [1] 成钊汀, 谭建. 分化型甲状腺癌术后患者131I治疗的辐射剂量与防护[J]. 国际放射医学核医学杂志, 2014, 38(2): 110−116. DOI: 10.3760/cma.j.issn.1673−4114.2014.02.010.Cheng ZT, Tan J. Radiation dose and protection of differentiated thyroid carcinoma postoperative patients with 131I treatment[J]. Int J Radiat Med Nucl Med, 2014, 38(2): 110−116. DOI: 10.3760/cma.j.issn.1673−4114.2014.02.010.
    [2] 张英杰, 梁军, 杨雪, 等. 非远处转移性高危分化型甲状腺癌的低剂量碘-131治疗[J]. 中国医学科学院学报, 2015, 37(5): 596−601. DOI: 10.3881/j.issn.1000−503X.2015.05.018.Zhang YJ, Liang J, Yang X, et al. Low-dose Radioiodine for Ablation in Non-metastatic High-risk Thyroid Cancer[J]. Acta Acad Med Sin, 2015, 37(5): 596−601. DOI: 10.3881/j.issn.1000−503X.2015.05.018.
    [3] Dehbi HM, Mallick U, Wadsley J, et al. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): long-term results of an open-label, non-inferiority randomised controlled trial[J]. Lancet Diabetes Endocrinol, 2019, 7(1): 44−51. DOI: 10.1016/S2213−8587(18)30306−1.
    [4] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 16361-2012 临床核医学的患者防护与质量控制规范[S]. 北京: 中国标准出版社, 2012.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB 16361-2012 Specification for patient radiological protection and quality control in nuclear medicine[S]. Beijing: Standards Press of China, 2012.
    [5] Egner JR. AJCC Cancer Staging Manual[J]. JAMA, 2010, 304(15): 1726−1727. DOI: 10.1001/jama.2010.1525.
    [6] 谭建, 蒋宁一, 李林, 等. 131I治疗分化型甲状腺癌指南(2014版)[J]. 中华核医学与分子影像杂志, 2014, 34(4): 264−278. DOI: 10.3760/cma.j.issn.2095−2848.2014.04.002.Tan J, Jiang NY, Li L, et al. 131I guidelines for the treatment of differentiated thyroid cancer (2014)[J]. Chin J Nucl Med Mol Imaing, 2014, 34(4): 264−278. DOI: 10.3760/cma.j.issn.2095−2848.2014.04.002.
    [7] 中华人民共和国国家质量监督检验检疫总局. GB 18871-2002 电离辐射防护与辐射源安全基本标准[S]. 北京: 中国标准出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 18871-2002 Basic STANDARDs for protection against ionizing radiation and for the safety of radiation sources[S]. Beijing: Standards Press of China, 2004.
    [8] International Atomic Energy Agency. Nuclear medicine resources manual[R]. Vienna: IAEA, 2006.
    [9] Martin TM, Vasudevan L, Chirayath SS. Correlation Between Exposure Rate and Residual Activity in Felines Undergoing 131I Thyroid Ablation Therapy[J]. Health Phys, 2015, 109(2): 95−103. DOI: 10.1097/HP.0000000000000297.
    [10] 靳平燕, 欧阳伟, 冯会娟, 等. 131I治疗分化型甲状腺癌患者的辐射剂量率研究[J]. 广东医学, 2016, 37(3): 386−388. DOI: 10.13820/j.cnki.gdyx.2016.03.016.Jin PY, Ouyang W, Feng HJ, et al. Study on the radiation dose rate of 131I in the treatment of differentiated thyroid cancer[J]. Guangdong Med J, 2016, 37(3): 386−388. DOI: 10.13820/j.cnki.gdyx.2016.03.016.
    [11] Jin PY, Feng HJ, Ouyang W, et al. Radiation dose rates of differentiated thyroid cancer patients after 131I therapy[J]. Radiat Environ Biophys, 2018, 57(2): 169−177. DOI: 10.1007/s00411−018−0736−7.
    [12] Markou P, Chatzopoulos D. Isolation Period Prediction in Patients With Differentiated Thyroid Carcinoma Treated After Thyroidectomy by Radioiodine-131[J]. Hell J Nucl Med, 2004, 7(3): 195−198.
    [13] Lahfi Y, Anjak O. Evaluation of the release criteria from hospital of thyroid carcinoma patient treated with 131I[J]. Radiat Prot Dosimetry, 2016, 171(4): 534−538. DOI: 10.1093/rpd/ncv477.
    [14] Asli IN, Baharfard N, Shafiei B, et al. Relation between clinical and laboratory parameters with radiation dose rates from patients receiving iodine-131 therapy for thyroid carcinoma[J]. Radiat Prot Dosimetry, 2010, 138(4): 376−381. DOI: 10.1093/rpd/ncp269.
    [15] Yama N, Sakata KI, Hyodoh H, et al. A retrospective study on the transition of radiation dose rate and iodine distribution in patients with I-131-treated well-differentiated thyroid cancer to improve bed control shorten isolation periods[J]. Ann Nucl Med, 2012, 26(5): 390−396. DOI: 10.1007/s12149−012−0586−3.
    [16] Demir M, Parlak Y, Çavdar I, et al. The evaluation of urine activity and external dose rate from patients receiving radioiodine therapy for thyroid cancer[J]. Radiat Prot Dosimetry, 2013, 156(1): 25−29. DOI: 10.1093/rpd/nct036.
    [17] Haghighatafshar M, Banani A, Zeinali-Rafsanjani B, et al. Impact of the Amount of Liquid Intake on the Dose Rate of Patients Treated with Radioiodine[J]. Indian J Nucl Med, 2018, 33(1): 10−13. DOI: 10.4103/ijnm.IJNM_90_17.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1) / Tables(4)

Article Metrics

Article views(17127) PDF downloads(51) Cited by()

Related
Proportional views

Factors of radiation dose rates and hospitalization days for papillary thyroid cancer patients with after first 131I therapy

    Corresponding author: Wei Ouyang, oyw1963@sina.com
  • Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China

Abstract:  Objective To explore the related factors affecting the reduction of radiation dose rate and to estimate the hospitalization days in papillary thyroid cancer (PTC) patients with postoperative after first 131I therapy. Methods A total of 167 patients with PTC were hospitalized and treated with iodine-131 from May 2015 to November 2018 at Zhujiang Hospital, Southern Medical University. The patients were divided into the high-dose group (63 cases) and the low dose-group (104 cases). The radiation dose rates of the two groups of patients at different time points were measured at a distance of 1 m, the required hospitalization isolation time was analyzed, and the factors related to the reduction in radiation dose rate were analyzed by using multiple linear regression method. Two independent samples nonparametric test and t-test were used to compare the differences between groups. Results After iodine-131 treatment for the first time, the radiation dose rate of the patients with PTC decreased exponentially with time, and the radiation dose rates of the high-dose group[(70.62± 34.45), 15.64 μSv/h] at 24 h and 48 h after iodine-131 treatment were significantly higher than those of the low-dose group [(11.27±5.13), 2.03 μSv/h] (t=−13.581, −7.952, both P < 0.01). Approximately 81.0% (51/63) and 90.5% (57/63) of the high-dose group were discharged after iodine-131 treatment for 48 h and 72 h, respectively. By contrast, 99% (103/104) of the low-dose group was discharged after iodine-131 treatment for 24 h. According to multiple linear regression analysis, the effects of iodine-131 dose, iodine uptake rate at 2 h on radiation dose rate at 24 h in the high dose group were statistically significant (F = 9.23, complex correlation coefficient R2 = 0.212, P < 0.01), and both iodine-131 dose and iodine uptake rate at 2 h had positive correlation with 24 h radiation dose rate. The effects of gender, iodine uptake rate at 24 h and residual thyroid volume (method 3) on radiation dose rate at 48 h in the high-dose group were statistically significant (F=34.45, complex correlation coefficient R2 = 0.622, P < 0.01), moreover the radiation dose rate at 48 h was positively correlated with iodine uptake rate at 24 h and residual thyroid volume, and negatively correlated with gender. The effects of iodine-131 dose and drinking water amount at 24 h on the radiation dose rate at 24 h in the low-dose group were statistically significant (F=12.76, complex correlation coefficient R2=0.186, P < 0.01), furthermore the radiation dose rate at 24 h in the low-dose group was positively correlated with iodine-131 dose, and negatively correlated with drinking water amount at 24 h. Conclusions After the first iodine-131 treatment for 24 h, the main factors influencing the reduction in the radiation dose rate of patients with PTC were the dose of iodine-131. The main factors influencing the reduction in radiation dose rate after 48 h were the iodine uptake rate of the thyroid at 24 h, the volume of the residual thyroid gland, and the gender of the patient. The mean hospitalization time in low dose group and high dose group was about 1 day and 2 days respectively.

    HTML

  • 甲状腺癌是内分泌系统最常见的恶性肿瘤,约占全身恶性肿瘤的1%,其发病率正在逐年上升[1]。甲状腺癌最常见的病理类型是DTC,其中约80%以上为甲状腺乳头状癌(papillary thyroid cancer,PTC),约15%以上为滤泡状癌。131I是治疗DTC的重要手段,随着131I的广泛应用,辐射安全问题日益受到关注。我国2002年辐射安全标准规定:131 I 治疗后,患者体内滞留活度降低至400 MBq(10.8 mCi)之前不得出院[2], 目前研究较多的是大剂量131I治疗后辐射剂量率的变化及所需住院隔离的时间,但对131I治疗后辐射剂量率的影响因素的研究较少,另外,近年来,131I治疗DTC的观念也在不断更新,对于无病灶患者更趋向于行小剂量131I清甲治疗[3-4],但目前尚缺乏小剂量131I清甲治疗的辐射剂量率的研究。本研究探讨PTC患者经过不同剂量131I治疗后的辐射剂量率的变化及影响因素,并预估患者所需住院隔离时间,为评估患者辐射风险及合理制定个性化防护指导提供理论依据。

1.   资料和方法

    1.1.   一般资料

  • 选取2015年5月至2018年11月在南方医科大学珠江医院住院行131I治疗的PTC患者167例,其中男性43例、女性124例,年龄8~72(37.14±12.00)岁。167例患者按照治疗剂量分为高剂量(≥3700 MBq)组(63例)和低剂量(<3700 MBq)组(104例)。

  • 1.2.   纳入、排除标准和治疗方法

  • 纳入标准:(1)临床资料完整;(2)签署了知情同意书;(3)已行甲状腺近全切或次全切切除术,病理结果证实为PTC;(4)按2015年美国甲状腺协会指南复发危险度分层满足中高危分层标准;(5)首次行131I治疗;(6)入院前均停服优甲乐3周,且禁碘饮食3周。

    排除标准:无法配合测量辐射剂量率和病理结果证实有远处转移的患者。

    治疗方法:131I由成都中核高通同位素股份有限公司提供,采用一次口服。高剂量组的口服剂量为3700~7400 MBq,低剂量组的口服剂量为1295~2800 MBq。131I治疗前,对患者进行辐射安全宣教,并化验血常规、肝肾功能、甲状腺功能、甲状腺球蛋白(thyroglobulin,Tg)、甲状腺球蛋白抗体(thyroglobulin antibodies,TGAb)、尿碘,行颈胸部CT、颈部彩超、甲状腺静态显像、唾液腺动态显像、计算甲状腺摄碘率(2、6、24 h)。服用131I后患者入住同位素病房隔离,每天含服酸性物质5~8次,大量饮水,并于服用131I后1~3 d行治疗后全身显像(posttreatment whole body scan,Rx-WBS),以检查甲状腺癌全身转移灶的情况。

  • 1.3.   主要仪器

  • 高剂量组测量仪器:天津贝克西弗科技有限公司的γ辐射测量仪(型号:FJ1200X),仪器测量范围为0.01~200.00 μSv/h,响应时间<3 s,测量精度≤±15%。低剂量组测量仪器:苏州RAYCAN公司的RadSys-wall在线辐射监测系统,仪器测量范围为0.01~500.00 μSv/h,响应时间<2 s,测量精度≤±15%。

  • 1.4.   辐射剂量的测量方法

  • 标准源及测量区域本底辐射剂量的监测:取400 MBq的131I作为标准源,离地1.5 m,在距离1 m处测量辐射剂量率,测量5次,取平均值,为30.21 μSv/h;测量该区域本底辐射剂量率水平,测量5次,取平均值,为0.22 μSv/h。

    高剂量组辐射剂量率的监测:患者口服131I后24、48、72、96 h时在距离其1 m处测量甲状腺区、腹部和盆腔位置的辐射剂量率,待读数稳定3 s以上记录数值,连续测定3个读数,取平均值,最后取3个部位的最大值进行记录,超过测量限制时记为200 μSv/h。

    低剂量组辐射剂量率的监测:RadSys-wall在线辐射监测系统安装在监督区空旷的一侧墙上,离地1.3 m,患者口服131I后24、48 h时立于距离监测仪1 m处测量其平均辐射剂量率,待读数稳定后记录数值,每天第1次测量用γ辐射测量仪进行核准,下一个患者测量前需待读数降至本底水平。

    所有患者测量前先排空膀胱,更换无污染的衣服。根据GB 16361-2012《临床核医学的患者防护和质量控制规范》[4](简称GB16361-2012)计算患者服用131I后体内放射性活度滞留量。

  • 1.5.   残留甲状腺评估的方法

  • 根据甲状腺静态显像、唾液腺动态显像和Rx-WBS中甲状腺床区浓聚灶的浓淡程度及个数将残留甲状腺分为4类:无残留(甲状腺区无浓聚灶)、极少量残留(1个或2个轻度浓聚灶)、少量残留(1个或2个明显浓聚灶或3个以上轻度浓聚灶)及部分残留(3个及3个以上明显浓聚灶)。

  • 1.6.   影响患者辐射剂量率的因素

  • 高剂量组和低剂量组均包括以下3个部分:(1)一般资料包括年龄、性别、病理T分期和病理N分期(AJCC第7版[5])、131I剂量;(2)实验室指标包括尿碘、治疗前TSH、治疗前Tg、治疗前TGAb、2 h甲状腺摄碘率(简称2 h摄碘率)、6 h甲状腺摄碘率(简称6 h摄碘率);(3)残留甲状腺指标包括甲状腺静态显像示残留甲状腺(残甲法1)、唾液腺动态显像示残留甲状腺(残甲法2)、Rx-WBS示残留甲状腺(残甲法3)、Rx-WBS示颈部甲状腺床外摄碘灶(颈部摄碘灶)。此外,高剂量组患者还检测了24 h甲状腺摄碘率(简称24 h摄碘率),患者24 h饮水量均>2500 mL,48 h饮水量均>5000 mL。记录低剂量组患者的24 h饮水量和48 h饮水量。

  • 1.7.   统计学分析

  • 采用SPSS 23.0软件进行统计学分析。计量资料经正态性检验服从正态分布者,以均数±标准差($\bar x $±s)表示;不服从正态分布者,以中位数及最小值、最大者[M(最小值~最大值)]表示。组间差异比较采用两独立样本非参数Mann-Whitney检验,Levene’s方差齐性检验提示两组患者24 h、48 h辐射剂量率的总体方差不齐,结果采用Satterthwaite近似t检验,其余数据符合方差齐性,采用两独立样本t检验。辐射剂量率影响因素筛查采用多重线性回归分析。P<0.05表示差异有统计学意义。

2.   结果

    2.1.   一般资料分析结果

  • 高剂量组和低剂量组患者在性别构成、年龄分布、病理T分期、病理N分期、尿碘、残甲法1和残甲法2上差异均无统计学意义(Z=−1.554~−0.100,均P>0.05),在131I剂量、治疗前TSH、治疗前Tg、治疗前TGAb、2 h摄碘率、6 h摄碘率、残甲法3、颈部摄碘灶上差异均有统计学意义(Z =−11.231~−3.165,均P<0.01)(表1)。

    项目 高剂量组(n=63)低剂量组(n=104)ZP
    性别 −0.909 0.419
     男 14(22.2%) 29(27.9%)
     女 49(77.8%) 75(72.1%)
    年龄(岁) 36.06±12.89 38.23±11.41 −1.391 0.164
    131I剂量(MBq) 5336.42±915.94 1547.60±406.84 −11.231 0.000
    病理T分期 −1.753 0.080
     Tx 3(4.8%) 13(12.5%)
     T1a/b 41(65.1%) 70(67.3%)
     T2 6(9.5%) 2(1.9%)
     T3 4(6.3%) 6(5.8%)
     T4a/b 9(14.3%) 13(12.5%)
    病理N分期 −1.068 0.285
     N0 7(11.1%) 10(9.6%)
     N1a 29(46.0%) 40(38.5%)
     N1b 27(42.9%) 54(51.9%)
    治疗前TSH(μg/L) 62.6±20.26 78.79±25.41 −3.870 0.000
    治疗前Tg(μg/L) 7.08(0.04~269.80) 0.85(0.04~16.40) −4.596 0.000
    治疗前TGAb(KU/L) −3.165 0.002
     阴性(0~115) 49(77.8%) 98(94.2%)
     阳性(>115) 14(22.2%) 6(5.8%)
    尿碘(μg/L) 30(20~500) 30(30~300) −0.100 0.921
    2 h摄碘率(%) 2.90(0.60~10.30) 2.25(1.20~18.00) −3.396 0.001
    6 h摄碘率(%) 2.40(0.50~16.60) 1.90(0.40~17.5) −3.363 0.001
    24 h摄碘率(%) 1.50(0.1~26.8)
    24 h饮水量(mL) 3554.33±1228.47
    48 h饮水量(mL) 6384.62±1922.43
    残甲法1 −1.554 0.120
     无残留 13(20.6%) 33(31.7%)
     极少量残留 14(22.2%) 13(12.5%)
     少量残留 25(39.7%) 54(51.9%)
     部分残留 11(17.5%) 4(3.8%)
    残甲法2 −0.242 0.809
     无残留 11(17.5%) 17(16.3%)
     极少量残留 13(20.6%) 13(12.3%)
     少量残留 28(44.4%) 70(67.3%)
     部分残留 11(17.5%) 4(3.8%)
    残甲法3 −3.180 0.010
     无残留 2(3.2%) 2(1.9%)
     极少量残留 1(1.6%) 8(7.7%)
     少量残留 48(76.2%) 91(87.5%)
     部分残留 12(19.0%) 3(2.9%)
    颈部摄碘灶 −4.338 0.000
     无 46(73.0%) 100(96.2%)
     ≤3个 14(22.2%) 4(3.8%)
     >3个 3(4.8%) 0(0.0%)
    24 h辐射剂量率(μSv/h) 70.62±34.45 11.27±5.13 −10.691 0.000
    48 h辐射剂量率(μSv/h) 15.64(2.59~92.75) 2.03(0.47~16.40) −10.348 0.000
    注:表中,TSH:促甲状腺激素;Tg:甲状腺球蛋白;TGAb:甲状腺球蛋白抗体。残甲法1:甲状腺静态显像法评估残留甲状腺;残甲法2:唾液腺动态显像法评估残留甲状腺;残甲法3:行131I治疗后全身显像法评估残留甲状腺;−:无此项数据

    Table 1.  Clinical characteristics of 167 patients with papillary thyroid carcinoma

  • 2.2.   辐射剂量率随时间的变化规律

  • 高剂量组和低剂量组的辐射剂量率随时间推移迅速下降,高剂量组下降速率随时间推移减缓。两组患者的24 h和48 h的辐射剂量率差异有统计学意义(t=−13.581、−7.952,均P<0.001)(表2)。高剂量组服用131I后24、48、72 h体内放射性活度滞留量分别为941.6、272.8、192.4 MBq,低剂量组服用131I后24、48 h体内放射性活度滞留量分别为150.3、32.9 MBq。

    24 h48 h72 h96 h(n=34)
    高剂量组(n=63)70.62± 34.4515.64
    (2.59~92.75)
    9.27
    (2.05~89.45)
    2.21
    (0.62~77.38)
    低剂量组(n=104)11.27±5.132.03
    (0.47~16.40)
    t−13.581−7.952
    P<0.001<0.001
     注:表中,−:无此项数据

    Table 2.  Radiation dose rates (μSV/h) at different time points at one meter in two groups of papillary thyroid carcinoma patients

  • 2.3.   患者出院的时间

  • 131I治疗后患者体内滞留131I活度为400 MBq时(相当于距离患者1 m处的剂量率约为30 μSv/h)的时间点定为出院时间。低剂量组治疗后24 h,仅1例患者未达到出院标准(24 h辐射剂量率为41.72 μSv/h))(表3),该患者为1例老年男性患者,超声提示其前列腺肿大,24 h饮水量仅为1500 mL,明显低于其他患者(平均3554 mL)。高剂量组治疗后48 h和72 h分别有19.0%(12/63)、9.5%(6/63)的患者未达到出院标准(表3),治疗后48 h未达标的12例中有10例相关检查均提示残留甲状腺较多,另外2例48 h辐射剂量率分别为32.27、32.95 μSv/h,已接近出院标准,而治疗后72 h未达标的6例患者相关检查均提示残留甲状腺较多。低剂量组和高剂量组的住院时间分别为(1.01±0.10)d和(2.22±0.77)d。

    组别例数24 h48 h72 h96 h
    高剂量组 635(8.0)51(81.0)57(90.5)62(98.4)
    低剂量组104103(99.0) 104(100)
     注:表中,−:无此项数据

    Table 3.  Reach the discharge standard of two papillary thyroid carcinoma patients' groups at different time points

  • 2.4.   患者辐射剂量率及其影响因素的多重线性回归分析结果

  • 将可能会影响辐射剂量率的因素包括性别、年龄、131I剂量、病理T分期(AJCC第7版)、病理N分期(AJCC第7版)、2 h摄碘率、6 h摄碘率、24 h吸碘率(高剂量组)、治疗前TSH、治疗前Tg、治疗前TGAb、残甲法1、残甲法2、残甲法3和颈部摄碘灶、24 h饮水量(低剂量组)作为自变量,高剂量组分别以24 h和48 h辐射剂量率作为因变量,低剂量组以24 h辐射剂量率作为因变量,采用多重线性回归分析辐射剂量率与各因素之间的关系。131I剂量和2 h摄碘率对高剂量组24 h辐射剂量率的影响有统计学意义(F=9.23,复相关系数R2=0.212,P<0.01)。高剂量组24 h辐射剂量率与131I剂量和2 h摄碘率呈正相关。性别、24 h摄碘率和残甲法3对高剂量组48 h辐射剂量率的影响有统计学意义(F=34.45,复相关系数R2=0.622,P<0.01)。高剂量组48 h辐射剂量率与性别呈负相关,与24 h摄碘率和残甲法3呈正相关,其中甲状腺的残留量对48 h辐射剂量率影响最大。131I剂量和24 h饮水量对低剂量组24 h辐射剂量率的影响有统计学意义(F=12.76,复相关系数R2=0.186,P<0.01)。低剂量组24 h辐射剂量率与131I剂量呈正相关,与24 h饮水量呈负相关(表4)。

    组别因变量自变量非标准化系数标准化系数tPB的95%可变区间
    B标准误Beta
    高剂量组(n=63)24 h辐射剂量率常量−14.61225.622   −−0.5710.571(−65.881~36.656)
    2 h摄碘率7.4741.9280.4503.8770.000(3.617~11.332)
    131I剂量0.4160.1610.3012.5920.012(0.095~0.737)
    48 h辐射剂量率常量−9.6259.216−1.0440.301(−28.073~88.823)
    24 h摄碘率1.5480.2640.5865.8680.000(1.020~2.076)
    残甲法39.0363.1260.2892.8910.005(2.779~15.294)
    性别−7.7293.377−0.181−2.2890.026(−14.489~969.000)
    低剂量组(n=104)24 h辐射剂量率常量8.2132.2043.7270.000(3.841~12.584)
    131I剂量0.1700.0410.3644.0900.000(0.087~0.252)
    24 h饮水量−0.0010.000−0.272−3.0580.003(−0.002~0.000)
     注:表中,残甲法3:行131I治疗后全身显像法评估残留甲状腺;−:无此项数据

    Table 4.  Multiple linear regression analysis of the influencing factors of radiation dose rate in high dose and low dose groups of the papillary thyroid carcinoma patients

3.   讨论
  • 目前国内外公认的治疗DTC的最佳方法为手术+131I治疗+TSH抑制治疗,131I可在清除DTC患者术后残留甲状腺组织的同时治疗转移灶,能有效降低复发率[6],但患者服用131I后存在对周围环境及人员的潜在辐射风险。2002年我国发布了GB18871-2002《电离辐射防护与辐射源安全基本标准》[7],规定患者体内的放射性活度降低至400 MBq前不得出院,但临床上难以直接测量患者体内残留131I的活度。此外,既往的DTC中高危患者占比大,131I治疗剂量偏大,且既往研究估算的出院时间是以美国核安全管理委员会及国际原子能机构推荐的≤1100 MBq(相当于1 m处辐射剂量率为70 μSv/h)为标准[8],均与目前新的规定和治疗理念不符。

    Martin等[9]的研究结果表明,131I活性在距离患者1 m处的辐射剂量率为0.06~0.08 μSv/h·MBq。因此,1 m处400 MBq 131I的辐射剂量率应为20~32 μSv/h,这与本研究中以1 m处400 MBq131I标准源的实际测量辐射剂量率(30.21 μSv/h)的测量结果一致。本研究以30 μSv/h(四舍五入)为出院标准,结果发现,首次131I治疗后,高剂量组患者剂量率随时间推移迅速下降,与先前的研究相似[10],高剂量组治疗后48 h和72 h出院达标率分别为81.0%、90.5%,略高于先前研究(76.4%、85.5%[9]和79.8%、86.1%[11]),考虑为先前研究纳入了远处转移患者,其辐射剂量率较高所致,但均与Markou和Chatzopoulos[12]、Lahfi和Anjak[13]的研究数据一致(131I治疗患者在治疗后48 h距离患者1 m处达到出院标准的比率为75%~92%)。详细查看未达标患者资料后发现,在高剂量组治疗后48 h未达标的12例中有10例相关检查均提示残留甲状腺较多,另外2例的48 h辐射剂量率分别为32.27、32.95 μSv/h,已接近出院标准,而治疗后72 h未达标的6例患者的相关检查均提示残留甲状腺较多。低剂量组治疗后24 h仅1例患者未达出院标准,99%均可以出院,未达出院标准的这1例患者为老年男性,既往有前列腺增大和便秘病史,并且治疗期间24 h和48 h内饮水量分别为1500、1600 mL,远低于其他患者。

    多项研究结果均表明,与放射性碘清除相关的因素是复杂和多样的[14-16]。我们早期研究根据治疗后48 h在距离患者(包括单次和重复治疗的所有危险层次的患者)1 m处的辐射剂量率是否小于30 μSv/h进行logistic回归分析,结果表明,只有24 h摄碘率是延长放射性碘清除的独立因素[10-11]。但在本次研究中我们发现,对于首次行131I治疗的中高危PTC患者,高剂量组24 h辐射剂量率与2 h摄碘率和131I剂量呈正相关,48 h辐射剂量率与24 h摄碘率和残留甲状腺体积(Rx-WBS评估法)呈正相关,而与性别呈负相关(女性的辐射剂量率降低得更快);而低剂量组24 h辐射剂量率与131I剂量呈正相关,与24 h饮水量呈负相关(即饮水量越多越有助于降低剂量率)。Haghighatafshar等[17]研究发现,62例服用131I剂量为3700~7400 MBq(100~200 mCi)的患者,治疗后48 h辐射剂量率与饮水量多少没有关系,这可能与其饮水量分组相关,其以60 mL/h(相当于24 h饮水量为1440 mL)的饮水量为分界点分为高(>60 mL/h)、低(<60 mL/h)两组,而在本研究中,低剂量组24 h每人每天饮水量为(3554.33±1228.47)mL,且饮水量越多,24 h辐射剂量率降低得更快,不足的是高剂量组虽每人每天饮水量均大于2500 mL,但未能统计其具体的饮水量,无法分析其对辐射剂量率的影响。在本研究中,无论是高剂量组还是低剂量组,残甲法1和残甲法2评估的残留甲状腺均与辐射剂量率无线性相关,这可能与此次研究者中多数患者为近全切以及甲状腺对131I和99TcmO4的摄取差别有关。另外,24 h辐射剂量率,无论是高剂量组还是低剂量组,均与131I剂量呈正相关,但在高剂量组中,48 h辐射剂量率与131I剂量无相关性,即在24 h内患者口服131I剂量越大,体内残留辐射剂量越高,而随着时间的推移,患者体内的131I残留量与口服131I剂量并无关系,出现此结果的原因可能为本研究选择的人群为非远处转移患者,或与131I在人体内的生物半衰期有关,但尚待进一步研究证实。因此,核医学科医师在治疗前的辐射安全教育中,应向患者强调饮水的重要性,但不能盲目追求大量饮水,要根据患者自身情况量力而行,并且对于首次行131I治疗的患者,在评估其出院时间及出院后的辐射风险时,应结合患者的残留甲状腺情况、24 h摄碘率、服用131I剂量、有无前列腺肥大和胃肠道功能状态进行综合考虑,以便更好地为患者提供个性化的防护指导意见。

    总之,PTC患者首次行131I治疗后,辐射剂量率随时间推移迅速下降,低剂量治疗者和高剂量治疗者住院隔离时间分别为(1.01±0.10)d和(2.22±0.77)d。适量饮水有助于降低辐射剂量率,24 h摄碘率高且残留甲状腺较多的男性患者服用大剂量131I治疗后48 h仍需注意与公众保持适当距离。

    利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

    作者贡献声明 冼嘉朗负责研究命题的提出、数据和资料的部分收集;吴菊清负责论文的撰写和修订;卢建杏负责数据和资料的部分收集;欧阳伟负责研究命题的提出和审核;冯会娟、陈盼、王静、邓玉颖负责获取患者的知情同意、后续的患者的解释工作和资料的收集;陈艳莹、罗嘉欣负责文献的搜集和整理。

Reference (17)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return