Volume 46 Issue 4
Apr.  2022
Article Contents

Citation:

Practical evaluation of different renal-depth estimation formulas in renal dynamic imaging for patients with horseshoe kidney

  • Objective To validate the accuracy of different estimation formulas for measuring renal depth in patients with horseshoe kidney using CT actual measured renal-depth as a reference standard. Methods The clinical data of 55 patients with horseshoe kidney who underwent 99Tcm-diethylene-triaminepentaacetic acid renal dynamic imaging in the First Affiliated Hospital of Chongqing Medical University from January 2015 to December 2020 were analyzed retrospectively. These patients included 33 males and 22 females aged 19–80 (42.2±16.3) years. The vertical distance between the farthest and nearest points of the renal hilum and the skin of both kidneys were selected respectively, and the average value was taken as the renal-depth. The gender, age, height, and weight of the patients were recorded. The estimated renal-depths were obtained using the Tonnesen, Taylor, and Li Qian formulas, respectively. Paired t test, Pearson correlation analysis, and Bland-Altman analysis were performed between the estimated and CT measured renal-depths. Results In 55 patients, the renal-depths calculated by the Tonnesen, Taylor, and Li Qian formulas were all lower than the CT measured renal-depths, and the differences were all statistically significant (left kidney: t=−14.04 to −6.85, all P<0.01; right kidney: t=−15.19 to −8.47, all P<0.01). A significant correlation existed between formulas estimated and CT measured renal-depths (r=0.430−0.528, all P<0.001), but the Li Qian formula correlated better than the Tonnesen and Taylor formula, where the correlation coefficient was (r=0.528, P<0.001) for the left kidney and (r=0.484, P<0.001) for the right kidney. All formulas underestimated the renal-depth; the estimated error increased with increased renal-depth, and the difference was statistically significant (95%CI: (0.805–1.471) to (2.347–3.061), all P<0.001). The bias between the renal-depths estimated by the Tonnesen formula and those measured by CT was the largest (left kidney: (2.38±1.24) cm; right kidney: (2.69±1.30) cm). Although the correlation coefficients of the Taylor and Tonnesen formulas were closer, the Taylor formula had better agreement, with biases of (1.76±1.29) cm and (1.70±1.32) cm for the left and right kidneys, respectively. The bias between the renal-depths derived from the Li Qian formula and those measured by CT was smaller (left kidney: (1.14±1.22) cm; right kidney: (1.46±1.27) cm). Conclusions The accuracy of renal-depth in patients with horseshoe kidney calculated using Tonnesen, Taylor, and Li Qian formulas were not as good as the actual CT measurement. Therefore, to accurately assess glomerular filtration rate, CT is recommended to measure the renal-depth of patients with horseshoe kidney.
  • 加载中
  • [1] Pawar AS, Thongprayoon C, Cheungpasitporn W, et al. Incidence and characteristics of kidney stones in patients with horseshoe kidney: a systematic review and meta-analysis[J]. Urol Ann, 2018, 10(1): 87−93. DOI: 10.4103/UA.UA_76_17.
    [2] Miller WG, Jones GRD. Estimated glomerular filtration rate; laboratory implementation and current global status[J]. Adv Chronic Kidney Dis, 2018, 25(1): 7−13. DOI: 10.1053/j.ackd.2017.09.013.
    [3] 李乾, 张春丽, 王荣福. 肾动态显像测定肾小球滤过率的影响因素[J]. 中国医学影像技术, 2004, 20(6): 962−964. DOI: 10.3321/j.issn:1003-3289.2004.06.046.Li Q, Zhang CL, Wang RF. Influence elements in the process of dynamic renal imaging to measure glomerular filtration rate[J]. Chin J Med Imaging Technol, 2004, 20(6): 962−964. DOI: 10.3321/j.issn:1003-3289.2004.06.046.
    [4] Tønnesen KH, Mogensen P, Wolf H, et al. Residual kidney function after unilateral nephrectomy. Pre- and postoperative estimation by renography and clearance measurements[J]. Scand J Urol Nephrol, 1976, 10(2): 130−133. DOI: 10.3109/00365597609179672.
    [5] Taylor A, Lewis C, Giacometti A, et al. Improved formulas for the estimation of renal depth in adults[J]. J Nucl Med, 1993, 34(10): 1766−1769.
    [6] 李乾, 张春丽, 付占立, 等. 肾动态显像法计算中国人肾脏深度[J]. 中国医学影像技术, 2007, 23(2): 288−291. DOI: 10.3321/j.issn:1003-3289.2007.02.037.Li Q, Zhang CL, Fu ZL, et al. Measuring kidney depth of Chinese people with kidney dynamic imaging[J]. Chin J Med Imaging Technol, 2007, 23(2): 288−291. DOI: 10.3321/j.issn:1003-3289.2007.02.037.
    [7] Sriperumbuduri S, Dent R, Malcolm J, et al. Accurate GFR in obesity —protocol for a systematic review[J/OL]. Syst Rev, 2019, 8(1): 147[2021-05-04]. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1052-2. DOI: 10.1186/s13643-019-1052-2.
    [8] 龚珂, 秦东芳, 王学晶. 肾小球滤过率测量方法的研究进展[J]. 中华检验医学杂志, 2020, 43(4): 502−506. DOI: 10.3760/cma.j.cn114452-20190514-00293.Gong K, Qin DF, Wang XJ. Research progress in the measurement of glomerular filtration rate[J]. Chin J Lab Med, 2020, 43(4): 502−506. DOI: 10.3760/cma.j.cn114452-20190514-00293.
    [9] Levey AS, Coresh J, Tighiouart H, et al. Measured and estimated glomerular filtration rate: current status and future directions[J]. Nat Rev Nephrol, 2020, 16(1): 51−64. DOI: 10.1038/s41581-019-0191-y.
    [10] Yong ZZ, Li F, Pei XH, et al. A comparison between 2017 FAS and 2012 CKD-EPI equations: a multi-center validation study in Chinese adult population[J]. Int Urol Nephrol, 2019, 51(1): 139−146. DOI: 10.1007/s11255-018-1997-4.
    [11] Mititelu R, Bratu O. Radionuclide imaging. An update on the use of dynamic renal scintigraphy[J]. Mod Med, 2017, 24(4): 199−203. DOI: 10.31689/rmm.2017.24.4.199.
    [12] Blaufox MD, De Palma D, Taylor A, et al. The SNMMI and EANM practice guideline for renal scintigraphy in adults[J]. Eur J Nucl Med Mol Imaging, 2018, 45(12): 2218−2228. DOI: 10.1007/s00259-018-4129-6.
    [13] Volterrani D, Orsini F, Guidoccio F. Radionuclide imaging of the nephro-urinary tract[M]//Volterrani D, Erba PA, Carrió I, et al. Nuclear medicine textbook: methodology and clinical applications. Cham: Springer, 2019: 785−808. DOI: 10.1007/978-3-319-95564-3_30.
    [14] Sugawara S, Ishii S, Kojima Y, et al. Feasibility of gamma camera-based GFR measurement using renal depth evaluated by lateral scan of 99mTc-DTPA renography[J]. Ann Nucl Med, 2020, 34(5): 349−357. DOI: 10.1007/s12149-020-01455-w.
    [15] Cosenza NN, Lau F, Lima MCL, et al. Influence of bladder fullness on the detection of urinary tract obstruction by dynamic renal scintigraphy[J]. Radiol Bras, 2017, 50(4): 237−243. DOI: 10.1590/0100-3984.2016-0061.
    [16] 陆素青, 卢彦祺, 付巍. 放射性核素肾动态显像弹丸注射方法的应用研究进展[J]. 国际放射医学核医学杂志, 2020, 44(10): 667−671. DOI: 10.3760/cma.j.cn121381-202004018-00085.Lu SQ, Lu YQ, Fu W. Application study of pellet injection method of nuclide kidney dynamic imaging[J]. Int J Radiat Med Nucl Med, 2020, 44(10): 667−671. DOI: 10.3760/cma.j.cn121381-202004018-00085.
    [17] 韩萍萍, 李玲, 刘杰, 等. 肾脏深度对肾动态显像测定肾小球滤过率的影响[J]. 中国医疗设备, 2017, 32(6): 66−69. DOI: 10.3969/j.issn.1674-1633.2017.06.017.Han PP, Li L, Liu J, et al. Effect of kidney depth in glomerular filtration rate measured by kidney dynamic imaging[J]. China Med Devices, 2017, 32(6): 66−69. DOI: 10.3969/j.issn.1674-1633.2017.06.017.
    [18] 陈曙光, 石洪成, 胡鹏程. Tonnesen公式计算肾脏深度的准确性与BMI的关系[J]. 中华核医学与分子影像杂志, 2012, 32(6): 430−433. DOI: 10.3760/cma.j.issn.2095-2848.2012.06.007.Chen SG, Shi HC, Hu PC. Accuracy of the Tonnesen formula and its relationship with body mass index[J]. Chin J Nucl Med Mol Imaging, 2012, 32(6): 430−433. DOI: 10.3760/cma.j.issn.2095-2848.2012.06.007.
    [19] Nautiyal A, Mukherjee A, Mitra D, et al. Impact of body mass index on Gates method of glomerular filtration rate estimation: a comparative study with single plasma sample method[J]. Indian J Nucl Med, 2019, 34(1): 19−23. DOI: 10.4103/ijnm.IJNM_112_18.
    [20] 麻广宇, 邵明哲, 陈云爽, 等. 肾脏深度对SPECT测定肾小球滤过率的影响[J]. 中国医学影像技术, 2013, 29(5): 800−804. DOI: 10.13929/j.1003-3289.2013.05.034.Ma GY, Shao MZ, Chen YS, et al. Impact of kidney depth on the measurement of glomerular filtration rate with SPECT[J]. Chin J Med Imaging Technol, 2013, 29(5): 800−804. DOI: 10.13929/j.1003-3289.2013.05.034.
    [21] 张智, 张更, 王志勇, 等. 马蹄肾的并发症及治疗研究进展[J]. 人民军医, 2018, 61(3): 271−273, 277.Zhang Z, Zhang G, Wang ZY, et al. Research progress on complications and treatment of horseshoe kidney[J]. People Mil Surg, 2018, 61(3): 271−273, 277.
    [22] Balawender K, Cisek A, Cisek E, et al. Anatomical and clinical aspects of horseshoe kidney: a review of the current literature[J]. Int J Morphol, 2019, 37(1): 12−16. DOI: 10.4067/S0717-95022019000100012.
    [23] Kang M, Kim YC, Lee H, et al. Renal outcomes in adult patients with horseshoe kidney[J]. Nephrol Dial Transplant, 2021, 36(3): 498−503. DOI: 10.1093/ndt/gfz217.
    [24] Qi Y, Hu PP, Xie YS, et al. Glomerular filtration rate measured by 99mTc-DTPA renal dynamic imaging is significantly lower than that estimated by the CKD-EPI equation in horseshoe kidney patients[J]. Nephrology (Carlton), 2016, 21(6): 499−505. DOI: 10.1111/nep.12663.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(2)

Article Metrics

Article views(3517) PDF downloads(29) Cited by()

Related
Proportional views

Practical evaluation of different renal-depth estimation formulas in renal dynamic imaging for patients with horseshoe kidney

    Corresponding author: Dong Duan, duandong26@163.com
  • 1. Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
  • 2. Department of Nuclear Medicine, Chongqing People's Hospital, Chongqing 400013, China

Abstract:  Objective To validate the accuracy of different estimation formulas for measuring renal depth in patients with horseshoe kidney using CT actual measured renal-depth as a reference standard. Methods The clinical data of 55 patients with horseshoe kidney who underwent 99Tcm-diethylene-triaminepentaacetic acid renal dynamic imaging in the First Affiliated Hospital of Chongqing Medical University from January 2015 to December 2020 were analyzed retrospectively. These patients included 33 males and 22 females aged 19–80 (42.2±16.3) years. The vertical distance between the farthest and nearest points of the renal hilum and the skin of both kidneys were selected respectively, and the average value was taken as the renal-depth. The gender, age, height, and weight of the patients were recorded. The estimated renal-depths were obtained using the Tonnesen, Taylor, and Li Qian formulas, respectively. Paired t test, Pearson correlation analysis, and Bland-Altman analysis were performed between the estimated and CT measured renal-depths. Results In 55 patients, the renal-depths calculated by the Tonnesen, Taylor, and Li Qian formulas were all lower than the CT measured renal-depths, and the differences were all statistically significant (left kidney: t=−14.04 to −6.85, all P<0.01; right kidney: t=−15.19 to −8.47, all P<0.01). A significant correlation existed between formulas estimated and CT measured renal-depths (r=0.430−0.528, all P<0.001), but the Li Qian formula correlated better than the Tonnesen and Taylor formula, where the correlation coefficient was (r=0.528, P<0.001) for the left kidney and (r=0.484, P<0.001) for the right kidney. All formulas underestimated the renal-depth; the estimated error increased with increased renal-depth, and the difference was statistically significant (95%CI: (0.805–1.471) to (2.347–3.061), all P<0.001). The bias between the renal-depths estimated by the Tonnesen formula and those measured by CT was the largest (left kidney: (2.38±1.24) cm; right kidney: (2.69±1.30) cm). Although the correlation coefficients of the Taylor and Tonnesen formulas were closer, the Taylor formula had better agreement, with biases of (1.76±1.29) cm and (1.70±1.32) cm for the left and right kidneys, respectively. The bias between the renal-depths derived from the Li Qian formula and those measured by CT was smaller (left kidney: (1.14±1.22) cm; right kidney: (1.46±1.27) cm). Conclusions The accuracy of renal-depth in patients with horseshoe kidney calculated using Tonnesen, Taylor, and Li Qian formulas were not as good as the actual CT measurement. Therefore, to accurately assess glomerular filtration rate, CT is recommended to measure the renal-depth of patients with horseshoe kidney.

    HTML

  • 马蹄肾是最常见的先天性肾脏融合畸形[1]。对于马蹄肾和其他肾脏疾病的患者,需要准确评估其肾脏功能以制定合适的治疗方案。准确的肾小球滤过率(glomerular filtration rate,GFR)对于解释临床症状、确定给药剂量、检测和管理肾脏疾病以及评估预后至关重要[2]。GFR指单位时间内两侧肾脏产生的超滤液量,是评价肾脏功能的重要指标。99Tcm-DTPA肾动态显像法是测定GFR的理想方法,该方法也称为Gates法。然而,这种方法的准确性受到许多因素的影响,其中肾脏深度是最重要的一种。肾脏深度偏差可导致GFR估算错误,真实肾脏深度相差1 cm,可导致估算的成年人GFR产生14%~16%的偏差[3]。目前,临床常用肾脏深度估算公式来计算肾脏深度,如Tonnesen公式[4]、Taylor公式[5]、北京大学第一医院推荐公式[6]等,但上述公式均以正常成年人为研究对象所得。马蹄肾患者双肾解剖形态结构与正常肾脏不同,现有的公式是否适合计算马蹄肾患者的肾脏深度仍有待进一步研究。故本研究评估不同肾脏深度估算公式对马蹄肾患者的适用性。

  • 1.   资料与方法

      1.1.   一般资料

    • 收集2015年1月至2020年12月于重庆医科大学附属第一医院核医学科行99Tcm-DTPA肾动态显像的55例马蹄肾患者的临床资料。其中,男性33例、女性22例,年龄19~80(42.2±16.3)岁,身高153~177(163.6±8.9) cm,体重50~83(61.5±9.7) kg。

      纳入标准:完成肾动态显像及前后1个月内有双肾CT检查结果诊断为马蹄肾的成年患者;排除标准:患腹水、严重肾脏积水、多囊肾、体内或肾内占位病变等可能影响肾脏深度疾病的患者。

      本研究获得重庆医科大学附属第一医院伦理委员会批准(批准号:2020-102007)。所有患者均于检查前签署了知情同意书。

    • 1.2.   CT实测肾脏深度

    • 采用德国西门子公司的Siemens Symbia T16双探头SPECT/CT扫描仪行双肾区CT扫描,扫描条件:管电压120 kV,管电流180 mA;扫描范围:自膈顶向下至髂前上嵴水平;层厚5 mm,层间距5 mm,螺距0.8 mm,采用标准图像重建。由2名有2年以上临床工作经验的核医学医师在卫宁健康科技集团股份有限公司的Tview v6.1.0影像归档和通信系统中测量受检者的双肾实际深度,测量方法:分别选取双肾肾门平面,测量左肾门平面最远点和最近点与皮肤的垂直距离a、b,右肾门平面最远点和最近点与皮肤的垂直距离c、d,根据左肾深度=(a+b)/2、右肾深度=(c+d)/2,得到左、右肾实测深度(图1)。将2名医师测量深度的平均值作为本研究参考的CT实测肾脏深度。

      Figure 1.  Cross-sectional view of renal-depth measured by CT

    • 1.3.   肾脏深度估算公式

    • 使用估算公式计算肾脏深度,常用的3种肾脏深度估算公式如下。

      Tonnesen公式[4]

      左肾深度(cm)=13.2×体重/身高+0.7

      右肾深度(cm)=13.3×体重/身高+0.7

      Taylor公式[5]

      左肾深度(cm)=16.17×体重/身高+0.027×年龄−0.94

      右肾深度(cm)=15.13×体重/身高+0.022×年龄+0.077

      北京大学第一医院推荐公式[6]

      左肾深度(cm)=16.772×体重/身高+0.01025×年龄+0.224

      右肾深度(cm)=15.449×体重/身高+0.009637×年龄+0.782

    • 1.4.   统计学分析

    • 应用IBM SPSS Statistics 25.0和MedCalc 19.7.2软件对数据进行统计学分析。符合正态分布的数据以$\bar{x} \pm s$表示。公式计算的肾脏深度与CT实测肾脏深度进行配对样本t检验(方差齐),并且对其进行Pearson相关性分析,计算相关系数。采用Bland-Altman对公式计算的肾脏深度与CT实测肾脏深度进行一致性分析,通过Bland-Altman分析并报告偏倚[即公式计算肾脏深度与CT实测肾脏深度之间的差值的均数±差值的标准差(${{\overline d}}$±Sd)]、95%的一致性界限[即公式计算的肾脏深度与CT实测肾脏深度之间差值的均数±1.96倍差值的标准差(${{\overline d}} $±1.96Sd)]和95%CIP<0.05 为差异有统计学意义。

    2.   结果

      2.1.   不同估算公式计算的肾脏深度与CT实测的肾脏深度

    • 表1可知,不同估算公式计算的肾脏深度均小于CT实测肾脏深度,且差异均有统计学意义(均P<0.01)。

      分肾Tonnesen公式[4]Taylor公式[5]北京大学第一医院推荐公式[6]CT实测
      左肾(n=55) 5.65±0.66a 6.26±1.05a 6.89±0.88a 8.03±1.44
      右肾(n=55) 5.68±0.67b 6.67±0.94b 6.91±0.82b 8.38±1.46
      注:a表示与CT实测肾脏深度相比,差异均有统计学意义(t=−14.04~−6.85,均P<0.01);b表示与CT实测肾脏深度相比,差异均有统计学意义(t=−15.19~−8.47,均P<0.01)。CT为计算机体层摄影术

      Table 1.  Comparison between renal-depths of 55 patients with horseshoe kidney calculated by different formulas and measured by CT ($\bar{x} \pm s$, cm)

    • 2.2.   Pearson相关性分析

    • 图2可见,不同估算公式计算的肾脏深度与CT实测肾脏深度之间存在显著的相关性(r=0.430~0.528,均P<0.001)。其中,北京大学第一医院推荐公式计算的肾脏深度较Tonnesen公式和Taylor公式更准确。

      Figure 2.  Correlation analysis between renal-depth of 55 patients with horseshoe kidney measured by CT and calculated by Tonnesen, Taylor and Li Q formulas

    • 2.3.   Bland-Altman一致性分析

    • 采用 Bland-Altman 对公式计算肾脏深度与 CT 实测肾脏深度之间进行一致性分析,结果显示,所有公式均低估了肾脏深度,且公式计算肾脏深度与 CT 实测肾脏深度之间的差值随着肾脏深度的增加而增加,差异均有统计学意义(均P<0.001)(表2图2)。 由表2可知,Tonnesen公式计算的肾脏深度与CT实测肾脏深度间偏倚最大[左肾:(2.38±1.24) cm、右肾:(2.69±1.30) cm]。由表2图3可知,虽然Taylor公式与Tonnesen公式的相关系数较为接近,但Taylor公式的一致性更好[左肾:(1.76±1.29) cm;右肾:(1.70±1.32) cm];北京大学第一医院推荐公式计算的肾脏深度与CT实测肾脏深度之间的偏倚较小[左肾:(1.14±1.22) cm、右肾:(1.46±1.27) cm]。

      项目分肾个数(个)${{\overline d}} $±Sd$\bar{x} \pm s $,cm)95%的一致性界限($\bar{x} \pm s $,cm)95% 置信区间P
      Tonnesen公式[4]与CT实测 左肾 55 2.38±1.24 2.38±2.43 2.039~2.718 <0.001
      右肾 55 2.69±1.30 2.69±2.55 2.347~3.061 <0.001
      Taylor公式[5]与CT实测 左肾 55 1.76±1.29 1.76±2.53 1.412~2.119 <0.001
      右肾 55 1.70±1.32 1.70±2.59 1.349~2.073 <0.001
      北京大学第一医院推荐公式[6]与CT实测 左肾 55 1.14±1.22 1.14±2.39 0.805~1.471 <0.001
      右肾 55 1.46±1.27 1.46±2.49 1.118~1.813 <0.001
       注:CT为计算机体层摄影术;$ {{\overline d}}$±Sd为估算公式计算肾脏深度与CT实测肾脏深度之间的差值的均数±差值的标准差

      Table 2.  Bland-Altman consistency analysis between formula calculated and CT measured renal-depths of 55 patients with horseshoe kidney

      Figure 3.  Bland-Altman consistency analysis between renal-depth of 55 patients with horseshoe kidney measured by CT and calculated by Tonnesen, Taylor and Li Q formulas

    3.   讨论
    • GFR是指单位时间内从肾小球滤过的有效肾血浆流量,是反映肾功能的重要指标之一[7]。准确评估GFR对于解释患者的临床症状和体征、确定给药剂量、监测和治疗肾脏疾病、评估预后至关重要[2]。目前获取GFR的方法较多,传统方法有菊粉清除率法、肌酐和胱抑素C估算法、双血浆法等,其中菊粉清除率法是测定GFR的“金标准”,但因其技术复杂、耗时长,无法广泛应用于临床[8]。因此,一些方程(如慢性肾脏疾病流行病学协作方程、肾脏疾病饮食修正方程和全年龄段方程)被开发用以估算GFR,其中全年龄段方程在中国人群中的表现优于慢性肾脏疾病流行病学协作方程,尤其是在老年人群中[9-10]。但上述方法只能得到总肾GFR,无法评价单侧肾功能。随着医学影像学技术的进步,一种新的测量GFR的方法被应用于临床。放射性核素肾脏动态显像是一种使用放射性药物和(或)放射性示踪剂来评估肾脏解剖、生理和病理的成像方法[11]。该方法能为临床提供分肾血供、肾实质功能、上尿路引流等方面的信息,且操作简便、不需要采集血液或尿液标本、其结果不受患者饮食的影响,弥补了传统检查方法无法准确获取肾脏功能信息的不足,因此成为目前临床测定 GFR 最常用的方法之一[12-13]。放射性核素肾动态显像法虽然准确率较高,但测定结果易受多种因素影响,例如:仪器设备的稳定性、患者的水化状态、膀胱充盈度、显像剂与血浆蛋白的结合率、弹丸注射质量、肾脏及本底ROI的选择、肾中放射性核素的衰减距离(肾脏深度)和衰减系数等,其中肾脏深度是最重要的影响因素之一[14-17]

      目前,常用Tonnesen公式、Taylor公式、北京大学第一医院推荐公式计算患者肾脏深度。同时,肾动态显像图像后处理软件中默认采用Tonnesen公式计算肾脏深度[4],但该公式有以下缺点:以小样本欧美地区人群为研究对象,且没有纳入儿童;肾脏深度由坐位超声状态下实测得出,存在一定测量误差;忽略了个体差异、年龄对肾脏深度的影响。这些缺点可能引起肾脏深度测量值的改变。陈曙光等[18]发现,在体重指数偏高或偏低的受检者中,Tonnesen公式计算结果的准确率会下降,从而低估真实的GFR,Nautiyal等[19]的研究结果与此类似。因此,很多学者对利用Tonnesen公式进行深度校正的准确性提出了质疑,并且在研究中提出了多种不同的计算公式。Taylor等[5]为了改善 Tonnesen 公式的不足,建立了更适合仰卧位受检者的肾脏深度公式,该公式以受检者的年龄、身高、体重为变量,可准确估算成人肾脏深度。由于这些公式都是以欧洲正常成年人为研究对象推导而出,人种之间的差异也可能导致肾脏深度估算的不准确。2007年北京大学第一医院李乾等[6]选择中国成年人为研究对象,使用CT实测肾脏深度作为参考值,并把身高、体重、年龄考虑在内,推导出了新的肾脏深度估算公式,并证明其比Tonnesen公式及Taylor公式更适用于我国的受检者。有学者以双血浆法测得的GFR 作为参考标准,对这几种公式进行了比较,认为应用肾动态显像 Gates 法估算成年人的 GFR 时,Tonnesens 公式、Taylor 公式的准确性较差,而北京大学第一医院推荐公式则具有更高的准确性[20]

      马蹄肾是一种先天性肾融合畸形,这种异常通常发生在妊娠第4~6周,由于后肾芽异常融合,影响了肾脏向头端迁移及双肾下极向两侧旋转的过程所致。尽管约30%的马蹄肾患者无任何临床症状,但与正常人相比,马蹄肾患者更易出现泌尿生殖系统结石、肾盂积水、感染、肾盂输尿管交界处梗阻、良恶性肿瘤等并发症,这些通常是患者就诊的主要原因[21-22]。有学者发现,患有并发症的马蹄肾患者存在终末期肾脏疾病的风险。因此,这些患者应被视为慢性肾脏疾病患者进行治疗,需要定期监测肾功能和潜在的并发症[23]。马蹄肾的诊断通常需要借助影像学检查,大多数马蹄肾患者肾旋转不良,下极融合形成峡部,通常位于腹主动脉及下腔静脉之前,呈“U”形,因此,其肾脏深度与正常肾脏有所不同。使用现有的肾脏深度估算公式可能会造成误差。Qi等[24]发现,在马蹄肾患者中,99Tcm-DTPA肾动态显像测定的GFR显著低于慢性肾脏病流行病合作研究所开发的估算公式计算得出的值,从而增加了这些患者肾衰竭的发生率,其中一些误差可能源于肾脏深度估算的不准确。对肾脏深度进行衰减校正是定量分肾功能的必要条件,在临床应用的分析软件中常用估算公式法校正肾脏深度。若肾脏位置或形态发生变化,肾脏深度和衰减系数也会改变。因此,肾动态显像法测定GFR的准确性取决于估算肾脏深度的准确性。

      尽管在国内外相关研究中不同肾脏深度估算公式在肾脏解剖结构正常的成人中的适用性已得到认可[4-6,18-20],但是在马蹄肾患者中的适用性仍有待研究。本研究的临床意义:以 CT 实测肾脏深度为参考标准,用统计学的方法评估了不同肾脏深度估算公式在马蹄肾患者中的适用性。结果表明,虽然CT 实测肾脏深度法和不同肾脏深度估算公式之间存在相关性,但也存在差异,Tonnesen 公式、Taylor 公式、北京大学第一医院推荐公式均低估了马蹄肾患者的肾脏深度。尽管北京大学第一医院推荐公式比其他2个公式的准确性更高,但在部分患者中测得的深度仍有较大偏差。使用 Gates 法测定 GFR时,准确估算马蹄肾患者的肾脏深度非常重要。为了提供可靠且准确的肾脏深度,推荐以CT实测深度为宜。由于本研究为单中心、小样本量的回顾性研究,且纳入标准严格,患者数量较少,难免存在系统误差,因此仍需扩大样本量来进一步验证本研究的结论。

      综上所述,由于马蹄肾肾脏形态具有多样性,现有的肾脏深度计算公式并不适用于马蹄肾患者。因此,对马蹄肾应该采用CT实测肾脏深度,以提供可靠和准确的肾脏深度,进一步拓宽 Gates 法的临床应用前景。

      利益冲突 所有作者声明无利益冲突

      作者贡献声明 吴昊负责研究的提出与设计、数据的收集与分析、论文的撰写;段东负责论文撰写的指导、内容的审核

Reference (24)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return