Volume 44 Issue 4
Jun.  2020
Article Contents

Citation:

Ability of asparagine-rich protein to enhance the radiation resistance of Arabidopsis thaliana

  • Objective To investigate the role of asparagine-rich protein (NRP) in resistance of Arabidopsis thaliana to radiation. Methods Wild-type (WT), NRP overexpression lines (Pro35S:NRP-GFP), and NRP mutant lines (nrp) of A. thaliana seeds were used and divided into two groups: irradiation (120 Gy γ-ray irradiation) and control (no irradiation). (1) Seeds of three genotypes of A. thaliana were cultured to the third day and irradiated with 120 Gy; the root length of each group was measured after culture was continued to the seventh day. (2) The seeds of three genotypes of A. thaliana were cultured in MS medium to the seventh day, and then irradiated with 120 Gy. After irradiation, the seeds were transplanted to the substrate soil for further culture until the 30th day. The growth and morphology of each group of plants were observed. (3) WT A. thaliana seeds were cultured to the seventh day and irradiated with 120 Gy. After 24 h, the changes in the relative expression of NRP and poly-ADP-ribose polymerase 2 (PARP2) genes in WT plants before and after irradiation were analyzed by real-time quantitative PCR. (4) The seeds of Pro35S:NRP-GFP A. thaliana were cultured to the seventh day and then irradiated with 120 Gy. The seedlings were observed by fluorescence confocal microscopy at different times after irradiation. Independent sample t-test was used for comparison between groups. Results (1) After irradiation, the root lengths of WT and nrp A. thaliana were significantly shortened (t=9.212 and 6.490, both P=0.000) to (2.73±0.43) cm and (1.31±0.53) cm, respectively, whereas the root lengths of the control group were (4.56±0.41) cm and (2.89±0.60) cm. The root lengths of Pro35S:NRP-GFP with or without irradiation exhibited no significant changes ((3.01±0.34) cm vs. (2.96±0.34) cm, t=0.253, P=0.801). (2) The growth and development of WT and nrp A. thaliana were significantly reduced (t=6.361–12.250, all P=0.000), whereas that of Pro35S:NRP-GFP maintained its development after irradiation. (3) The relative expression of NRP and PARP2 of WT A. thaliana significantly increased after irradiation (t=4.447 and 7.776, P=0.002 and 0.000). (4) Pro35S:NRP-GFP seedlings exhibited NRP re-localization into the nucleus after irradiation at each time point. Conclusion NRP may play a critical role in the resistance of A. thaliana to radiation, suggesting that NRP may be an important gene in radiation-caused injury in this species.
  • 加载中
  • [1] Ayabe Y, Hijii N, Takenaka C. Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident[J]. Environ Pollut, 2017, 228: 344−353. DOI: 10.1016/j.envpol.2017.05.041.
    [2] Kim DS, Kim JB, Goh EJ, et al. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways[J]. J Plant Physiol, 2011, 168(16): 1960−1971. DOI: 10.1016/j.jplph.2011.05.008.
    [3] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796−815. DOI: 10.1038/35048692.
    [4] Binenbaum J, Weinstain R, Shani E. Gibberellin Localization and Transport in Plants[J]. Trends Plant Sci, 2018, 23(5): 410−421. DOI: 10.1016/j.tplants.2018.02.005.
    [5] Qi WC, Zhang L, Feng WS, et al. ROS and ABA Signaling are Involved in the Growth Stimulation Induced by Low-Dose Gamma Irradiation in Arabidopsis Seedling[J]. Appl Biochem Biotechnol, 2015, 175(3): 1490−1506. DOI: 10.1007/s12010−014−1372−6.
    [6] Moreno-Romero J, Armengot L, Mar Marquès-Bueno M, et al. CK2-defective Arabidopsis plants exhibit enhanced double-strand break repair rates and reduced survival after exposure to ionizing radiation[J]. Plant J, 2012, 71(4): 627−638. DOI: 10.1111/j.1365−313X.2012.05019.x.
    [7] Song J, Keppler BD, Wise RR, et al. PARP2 is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA damage and immune responses[J]. PLoS Genet, 2015, 11(5): e1005200. DOI: 10.1371/journal.pgen.1005200.
    [8] Tenhaken R, Doerks T, Bork P. DCD - a novel plant specific domain in proteins involved in development and programmed cell death[J/OL]. BMC Bioinformatics, 2005, 6: 169[2019-03-13]. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-169. DOI: 10.1186/1471-2105-6-169.
    [9] Ludwig AA, Tenhaken R. A New Cell Wall Located N-rich Protein is Strongly Induced During the Hypersensitive Response in Glycine Max L.[J]. Eur J Plant Pathol, 2001, 107(3): 323−336. DOI: 10.1023/a:1011202225323.
    [10] Reis PAB, Carpinetti PA, Freitas PPJ, et al. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants[J/OL]. BMC Plant Biol, 2016, 16: 156[2019-03-13]. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0843-z. DOI: 10.1186/s12870-016-0843-z.
    [11] Bai Y, Kissoudis C, Yan Z, et al. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress[J]. Plant J, 2018, 93(4): 781−793. DOI: 10.1111/tpj.13800.
    [12] Irsigler AS, Costa MD, Zhang P, et al. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways[J/OL]. BMC Genomics, 2007, 8: 431[2019-03-13]. https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-8-431. DOI: 10.1186/1471-2164-8-431.
    [13] Costa MDL, Reis PAB, Valente MAS, et al. A New Branch Of Endoplasmic Reticulum Stress Signaling and the Osmotic Signal Converge on Plant-Specific Asparagine-Rich Proteins to Promote Cell Death[J]. J Biol Chem, 2008, 283(29): 20209−20219. DOI: 10.1074/jbc.M802654200.
    [14] Ludwig A, Tenhaken R. Suppression of the ribosomal L2 gene reveals a novel mechanism for stress adaptation in soybean[J]. Planta, 2001, 212(5/6): 792−798. DOI: 10.1007/s004250000427.
    [15] Liang YB, Cui SC, Tang XL, et al. An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana[J/OL]. Front Plant Sci, 2018, 9: 303[2019-03-13]. https://www.frontiersin.org/articles/10.3389/fpls.2018.00303/full. DOI: 10.3389/fpls.2018.00303.
    [16] Hoepflinger M C, Pieslinger A M, Tenhaken R. Investigations on N-rich protein (NRP) of Arabidopsis thaliana under different stress conditions[J]. Plant Physiol Biochem, 2011, 49(3): 293−302. DOI: 10.1016/j.plaphy.2011.01.005.
    [17] Vishwakarma K, Upadhyay N, Kumar N, et al. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects[J/OL]. Front Plant Sci, 2017, 8: 161[2019-03-13]. https://www.frontiersin.org/articles/10.3389/fpls.2017.00161/full. DOI: 10.3389/fpls.2017.00161.
    [18] Zhu T, Wu YY, Yang XD, et al. The Asparagine-Rich Protein NRP Facilitates the Degradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis[J]. Mol Plant, 2018, 11(2): 257−268. DOI: 10.1016/j.molp.2017.11.006.
    [19] Hauser F, Li ZX, Waadt R, et al. SnapShot: Abscisic Acid Signaling[J]. Cell, 2017, 171(7): 1708−1708. DOI: 10.1016/j.cell.2017.11.045.
    [20] Humplik JF, Bergougnoux V, van Volkenburgh E. To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid[J]. Trends Plant Sci, 2017, 22(10): 830−841. DOI: 10.1016/j.tplants.2017.07.009.
    [21] Bauer H, Ache P, Lautner S, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis[J]. Curr Biol, 2013, 23(1): 53−57. DOI: 10.1016/j.cub.2012.11.022.
    [22] Endo A, Sawada Y, Takahashi H, et al. Drought Induction of Arabidopsis 9-Cis-Epoxycarotenoid Dioxygenase Occurs in Vascular Parenchyma Cells[J]. Plant Physiol, 2008, 147(4): 1984−1993. DOI: 10.1104/pp.108.116632.
    [23] Zhou RM, Zhu T, Han L, et al. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2[J]. J Exp Bot, 2017, 68(13): 3427−3440. DOI: 10.1093/jxb/erx192.
    [24] Dai MQ, Xue Q, Mccray T, et al. The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis[J]. Plant Cell, 2013, 25(2): 517−534. DOI: 10.1105/tpc.112.105767.
    [25] Jubin T, Kadam A, Jariwala M, et al. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival[J]. Cell Prolif, 2016, 49(4): 421−437. DOI: 10.1111/cpr.12268.
    [26] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909−930. DOI: 10.1016/j.plaphy.2010.08.016.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(63816) PDF downloads(51) Cited by()

Related
Proportional views

Ability of asparagine-rich protein to enhance the radiation resistance of Arabidopsis thaliana

    Corresponding author: Saijun Fan, fansaijun@irm-cams.ac.cn
  • Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China

Abstract:  Objective To investigate the role of asparagine-rich protein (NRP) in resistance of Arabidopsis thaliana to radiation. Methods Wild-type (WT), NRP overexpression lines (Pro35S:NRP-GFP), and NRP mutant lines (nrp) of A. thaliana seeds were used and divided into two groups: irradiation (120 Gy γ-ray irradiation) and control (no irradiation). (1) Seeds of three genotypes of A. thaliana were cultured to the third day and irradiated with 120 Gy; the root length of each group was measured after culture was continued to the seventh day. (2) The seeds of three genotypes of A. thaliana were cultured in MS medium to the seventh day, and then irradiated with 120 Gy. After irradiation, the seeds were transplanted to the substrate soil for further culture until the 30th day. The growth and morphology of each group of plants were observed. (3) WT A. thaliana seeds were cultured to the seventh day and irradiated with 120 Gy. After 24 h, the changes in the relative expression of NRP and poly-ADP-ribose polymerase 2 (PARP2) genes in WT plants before and after irradiation were analyzed by real-time quantitative PCR. (4) The seeds of Pro35S:NRP-GFP A. thaliana were cultured to the seventh day and then irradiated with 120 Gy. The seedlings were observed by fluorescence confocal microscopy at different times after irradiation. Independent sample t-test was used for comparison between groups. Results (1) After irradiation, the root lengths of WT and nrp A. thaliana were significantly shortened (t=9.212 and 6.490, both P=0.000) to (2.73±0.43) cm and (1.31±0.53) cm, respectively, whereas the root lengths of the control group were (4.56±0.41) cm and (2.89±0.60) cm. The root lengths of Pro35S:NRP-GFP with or without irradiation exhibited no significant changes ((3.01±0.34) cm vs. (2.96±0.34) cm, t=0.253, P=0.801). (2) The growth and development of WT and nrp A. thaliana were significantly reduced (t=6.361–12.250, all P=0.000), whereas that of Pro35S:NRP-GFP maintained its development after irradiation. (3) The relative expression of NRP and PARP2 of WT A. thaliana significantly increased after irradiation (t=4.447 and 7.776, P=0.002 and 0.000). (4) Pro35S:NRP-GFP seedlings exhibited NRP re-localization into the nucleus after irradiation at each time point. Conclusion NRP may play a critical role in the resistance of A. thaliana to radiation, suggesting that NRP may be an important gene in radiation-caused injury in this species.

    HTML

  • 目前,核技术已经广泛应用于工业、生活和医疗等国民经济发展的各个领域。植物普遍表现出较高的电离辐射耐受性[1],故植物辐射耐受性的研究可能为辐射损伤救治提供新的思路。拟南芥是目前广泛使用的模式生物之一,能够耐受的辐射剂量高达100 Gy[2]。拟南芥的遗传背景简单清晰,繁殖周期短,是理想的实验研究模型[3]。研究结果显示,植物体内高水平的赤霉素可保证根茎的正常萌发[4],且当植物受到低剂量照射时,体内脱落酸(abscisic acid,ABA)水平显著上升,并调控其响应机制[5]。在分子水平上,保守性较高的蛋白激酶CK2(casein kinase 2)对植物辐照后的DNA重组修复有着重要作用[6]。多聚二磷酸腺苷核糖聚合酶2(poly-ADP-ribose polymerase 2,PARP2)通过介导蛋白质的聚二磷酸腺苷核糖基化而发挥DNA修复和染色质修饰等功能[7]。植物体内的抗逆机制错综复杂,其辐射耐受性的具体机制仍需更多的研究进行探讨。

    富天冬酰胺蛋白(asparagine-rich protein,NRP)是一种植物特有的参与胁迫应激响应的蛋白,其N末端富含天冬酰胺(约25%),C末端为与发育和细胞凋亡相关的功能性结构域[8-9]。NRP首先在大豆(Glycine max)中被发现,在大豆感染真菌后的超敏反应过程中大量表达,可作为细胞凋亡的标志物[9]。NRP广泛存在于植物体内并高度保守,这表明其在植物的发育与应激响应过程中发挥着重要的作用[10]。本研究以NRP为研究对象,初步探讨NRP在拟南芥辐射抵抗中的作用。

1.   材料与方法

    1.1.   实验材料与仪器

  • MS培养基〔蔗糖10 g/L、MS 2 g/L、2-(N-吗啉代)乙磺酸0.5 g/L、1%琼脂,用2 moL/L KOH调pH至5.7〕为本实验室自配,所需试剂和材料均购自北京索莱宝公司;反转录试剂盒PrimeScriptTM RT reagent Kit购自日本TAKARA公司;SybrGreen荧光探针购自上海罗氏公司;USD Autocell40 137Cs γ射线源(0.015 Gy/s)为加拿大原子能有限公司产品;Leica TCS SP8激光共聚焦显微镜为德国徕卡公司产品;野生型(WT)、NRP过表达型(Pro35S:NRP-GFP)、NRP突变型(nrp)拟南芥种子为本实验室自储备。

  • 1.2.   分组及照射
  • WTPro35S:NRP-GFPnrp 3 种拟南芥种子分别分为照射组和对照组,其中,照射组置于γ 射线源下120 Gy照射,对照组不照射,其余处理相同。

  • 1.3.   拟南芥的种植

  • 将拟南芥种子置于1.5 mL离心管中,经次氯酸钠消毒后用无菌水清洗2遍,4℃下春化2~3 d后,点播于MS培养基上,20℃下每天18 h长日照垂直培养。

  • 1.4.   根长统计、植株生长与形态观察

  • (1)根长统计:WTPro35S:NRP-GFPnrp 3种拟南芥种子垂直培养至第3天进行照射,照射结束后继续培养至第8天,观察并统计各组根长;(2)植株生长与形态观察:3种拟南芥种子垂直培养至第7天进行照射,照射结束后将各组幼苗分别移栽于基质土中培养,用保鲜膜覆盖保湿2 d后取下,20℃下每天18 h长日照垂直培养。自铺板日计起,30 d后观察各组的植株形态。以上统计数每组均不小于30棵。

  • 1.5.   实时定量PCR

  • WT种子垂直培养至第7天进行照射,照射结束后继续培养24 h,取幼苗加入液氮研磨,采用Trizol法提取总RNA,使用反转录试剂盒反转成cDNA。采用翻译延伸因子1A作为内参,NRPPARP2两种基因的引物序列如下。

    NRP 上游引物: CGACTCGATCTGGAGCACAA

    NRP 下游引物: ACCCACAGGTCCGAATCCTA

    PARP2 上游引物:AGCACAAAAGGTGTGGGGAA

    PARP2 下游引物:GAACGTTCCACTGGTTTGCC

    将SybrGreen荧光探针按照说明书中要求的比例分别与各基因引物、DNA聚合酶混合加入PCR八联管中,每个样本、每个检测基因设置4个重复。

  • 1.6.   激光共聚焦显微观察

  • Pro35S:NRP-GFP种子垂直培养至第7天进行照射,分别于照射结束后0.5、2、4、24 h用镊子从MS培养基上小心夹取幼苗进行4′,6-二脒基-2-苯基吲哚(DAPI)染色,染色后制片,于激光共聚焦显微镜下观察,并拍摄照片。

  • 1.7.   统计学方法

  • 采用SPSS25.0软件对数据进行统计学分析。采用 Kolmogorov-Smirnov 法检验数据是否符合正态分布(P >0.1为符合正态分布),符合正态分布的数据采用均数±标准差($\bar x$±s)表示。采用Hartley检验验证数据是否符合方差齐性(P>0.1为符合方差齐性),对符合正态分布且方差齐性的数据采用独立样本t检验。P<0.05为差异有统计学意义。

2.   结果

    2.1.   不同基因型拟南芥幼苗根长的观察结果

  • WTPro35S:NRP-GFPnrp 3种拟南芥幼苗培养至第8天的根长情况见图1。其中,WT照射组的根长与对照组相比明显缩短,且差异有统计学意义[(2.73±0.43)cm vs.(4.56±0.41)cm,t=9.212,P=0.000],但Pro35S:NRP-GFP照射组的根长与其对照组相比,差异无统计学意义[(3.01±0.34)cm vs.(2.96±0.34)cm,t=0.253,P=0.801]。nrp照射组的根长与其对照组相比明显缩短,差异有统计学意义[(1.31±0.53)cm vs.(2.89±0.60)cm,t=6.490,P=0.000]。

    Figure 1.  Root length of Arabidopsis thaliana seedlings with different genotypes before and after irradiation

  • 2.2.   不同基因型拟南芥植株生长与形态的观察结果

  • WTPro35S:NRP-GFPnrp 3种拟南芥植株培育至第30天的生长状态与形态见图2。3种基因型的对照组植株表型相似,第30 天株高为 (21.79±2.52) cm,莲座叶直径为 (16.26±0.88) cm。而WTnrp照射组植株的生长受阻,与对照组相比,WTnrp照射组植株株高变矮(图2中A、C),莲座叶直径变小(图2中B、D)。其中,WT照射组株高为(6.84±2.66) cm、莲座叶直径为(12.49±1.00) cm,nrp照射组株高为(2.56±1.53) cm、莲座叶直径为(10.05±0.98) cm,与对照组相比,差异均有统计学意义(WT照射组:t=6.727和6.361,均P=0.000;nrp照射组:t=9.175和12.250,均P=0.000)。Pro35S:NRP-GFP照射组虽然株高[(16.94±2.49) cm]也显著降低,但更接近于正常值(t=3.179,P=0.000),同时莲座叶发育正常[(14.59±0.36) cm],与对照组相比差异无统计学意义(t=1.478,P=0.165)。以上结果表明NRP能够有效增强拟南芥的辐射耐受性,并能在一定程度上缓解大剂量辐射造成的生长抑制。

    Figure 2.  Growth state and morphology of Arabidopsis thaliana with different genotypes cultured for 30 days

  • 2.3.   野生型植株受照后的受损情况

  • 实时定量PCR检测结果(图3)显示,受照后的WT拟南芥植株中,NRPPARP2的相对表达量均较对照组明显升高,且差异有统计学意义(t=4.447和7.776,P=0.002和0.000)。

    Figure 3.  Detection of relative expression levels of NRP and PARP2 before and after irradiation

  • 2.4.   激光共聚焦显微观察结果

  • 激光共聚焦显微镜观察结果(图4)显示,Pro35S:NRP-GFP对照组根部及叶片中NRP均分布于胞质中,而Pro35S:NRP-GFP照射组在各个时间点的NRP均与细胞核出现共定位,这表明照射后NRP出现了入核现象。

    Figure 4.  Confocal microscopy images of the seedlings of Pro35S:NRP-GFP A. thaliana before and after irradiation

3.   讨论
  • 由于植物直接暴露于多种环境及生物胁迫之下,经长期演化已经形成了复杂的感知、转导和适应性反应机制,以应对外界胁迫并维持细胞稳态[11]。NRP广泛参与了对生物及非生物应激响应初始阶段的信号传导[12-13]。NRP是大豆感染早期的重要响应基因[14],在烟草中能增加对烟草花叶病毒的抗性[15]。当出现渗透压、氧化等胁迫时,NRP转录水平明显升高,且能够介导内质网的应激反应途径,激活细胞的程序性死亡以应对外界胁迫[13, 16]。植物激素ABA是植物应对非生物胁迫的主要调节因子[17]。ABA参与辐照后植物的自身调节,且NRP参与了ABA响应途径,与ABA发挥交叉调节的作用[5, 18]。ABA参与调节植物的生长和发育,如种子成熟、休眠、发芽和幼苗生长等[19-20]。盐、干旱和低温都会导致渗透压胁迫,从而引发维管薄壁组织和保卫细胞中的ABA的生物合成[21-22]。NRP在大丽轮枝菌侵染时调控植物的开花周期[23],正向响应ABA通路,通过液泡降解途径与PP6型磷酸酶FyPP3共同降解,促进ABA响应[18]。由此可见,NRP在植物应激响应的过程中发挥了重要作用。

    我们使用WTPro35S:NRP-GFPnrp 3种基因型的拟南芥进行了γ射线照射后植株表型的观察与统计。结果显示,120 Gy射线照射能明显抑制WTnrp植株的根长发育,而Pro35S:NRP-GFP照射组的根长与其对照组相比无明显变化。植株根长是种子萌发后生长发育阶段的重要指标,ABA受外界胁迫的影响,调控植物萌发和根长延长。本研究中,Pro35S:NRP-GFPnrp对照组的根长比WT对照组短,这是由于NRP对ABA的调节属反馈调节[18],NRP的不稳定表达使ABA下游响应失常,导致ABA不敏感蛋白5等基因的调控改变[24],因而Pro35S:NRP-GFPnrp在萌发阶段有异于WT,但后期的生长发育和株高等不受影响。在植株的生长阶段,射线也有同样的抑制作用,照射后WTnrp植株的莲座叶直径和株高都明显减小。而照射后Pro35S:NRP-GFP植株的株高虽明显减小,但相较于WTnrp有明显的回升趋势,且植株整体生长状态良好,莲座叶发育不受影响,与其对照组相比无明显差异。

    PARP家族蛋白通过介导蛋白质聚二磷酸腺苷核糖基化发挥DNA修复和染色质修饰等功能[25]。PARP2是拟南芥PARP家族中发挥主要功能的蛋白[7]。辐射导致的DNA链断裂是射线损伤机体的重要原因。而本研究中PARP2表达量的升高表明照射后拟南芥植株的DNA损伤修复活性升高。但是NRP与PARP2是否存在交叉调节的功能需要进一步研究探讨。

    本研究结果显示,NRP过表达可以增强植株的辐射耐受性,而NRP缺失则会降低辐射耐受性。这说明NRP在拟南芥植株应对辐射造成的损伤中也发挥着重要作用,但NRP发挥辐射耐受功能的具体机制仍未可知。有研究结果表明,自然状态下NRP分布于细胞质中,而外界胁迫可使部分NRP转移至线粒体定位,这表明受胁迫后NRP的功能可能与其转移至线粒体有关[16]。线粒体在植物适应胁迫中起着重要作用,它是活性氧产生的主要部位,同时也是调节活性氧清除应对氧化应激的关键[26]。而电离辐射可使受照植物体产生大量活性氧。为验证NRP在应对辐射损伤过程中是否出现定位转移,我们对照射前后的NRP定位进行观察,结果显示,植株体内NRP在照射后并没有与线粒体共定位,而是进入了细胞核,这表明照射后NRP可能介导了不同于渗透压和氧化应激的通路来应对辐射引起的损伤。

    NRP增强拟南芥辐射耐受性的具体分子机制尚不明确。目前已知的与NRP抗逆机制紧密相关的是ABA信号通路,但NRP增强拟南芥的辐射耐受性及照射后的核定位现象是源于对ABA的响应,还是源于不依赖ABA的其他调节途径,仍需进一步研究探讨。对于NRP影响拟南芥辐射耐受性的研究有助于我们进一步理解生物体减轻辐射损伤的机制。

    利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

    作者贡献声明 贺俊博、张雪莹负责现场实验的实施、论文的撰写;樊赛军、朱彤负责实验思路的提供、课题设计的指导、论文的审阅和修改。

Reference (26)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return