Volume 44 Issue 6
Aug.  2020
Article Contents

Citation:

Research progress on polymer nanomaterials for tumor radiotherapy

  • Corresponding author: Jianfeng Liu, lewis78@163.com
  • Received Date: 2019-06-03
  • Radiotherapy is one of the three conventional methods for the treatment of malignant tumors. However, its expected effect is not often achieved because of some limitations, such as normal tissue damage by high radiation dose and the radiation resistance of tumor cells. Thus, exploring new strategies for new radiosensitizers and radio-chemotherapy agents has become a research focus to improve the efficacy of radiotherapy and reduce its side effects on normal tissues. Polymer nanomaterials have broad application prospects in improving the effect of radiotherapy because of their excellent biocompatibility and physiological stability. This article reviews the research progress on polymer nanomaterials for radiosensitization.
  • 加载中
  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394−424. DOI: 10.3322/caac.21492.
    [2] Stapleton S, Jaffray D, Milosevic M. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery[J]. Adv Drug Deliv Rev, 2017, 109: 119−130. DOI: 10.1016/j.addr.2016.05.021.
    [3] Wang H, Mu XY, He H, et al. Cancer Radiosensitizers[J]. Trends Pharmacol Sci, 2017, 39(1): 24−48. DOI: 10.1016/j.tips.2017.11.003.
    [4] Yu CYY, Xu H, Ji SL, et al. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation[J/OL]. Adv Mater, 2017, 29(15)[2019-06-02]. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201606167. DOI: 10.1002/adma.201606167.
    [5] Song GS, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J/OL]. Adv Mater, 2017, 29(32)[2019-06-02]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201700996. DOI: 10.1002/adma.201700996.
    [6] Tomoda K, Chiang C, Kozak KR, et al. Examination of Gossypol-Pluronic Micelles as Potential Radiosensitizers[J/OL]. AAPS J, 2015, 17(6): 1369−1375[2019-06-02]. https://link.springer.com/article/10.1208/s12248−015−9809−6. DOI: 10.1208/s12248-015-9809-6.
    [7] de Sousa Cavalcante L, Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer[J]. Eur J Pharmacol, 2014, 741: 8−16. DOI: 10.1016/j.ejphar.2014.07.041.
    [8] Rezaee M, Hunting DJ, Sanche L. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4): 847−853. DOI: 10.1016/j.ijrobp.2013.06.2037.
    [9] 章鹤, 宋建元, 曹建平. 肿瘤放射增敏药物的研究进展[J]. 国际放射医学核医学杂志, 2014, 38(6): 408−411. DOI: 10.3760/cma.j.issn.1673−4114.2014.06.014.Zhang H, Song JY, Cao JP. The research progression of cancer radio-sensitization drugs[J]. Int J Radiat Med Nucl Med, 2014, 38(6): 408−411. DOI: 10.3760/cma.j.issn.1673−4114.2014.06.014.
    [10] Tano T, Okamoto M, Kan S, et al. Immunochemoradiotherapy for Patients with Oral Squamous Cell Carcinoma: Augmentation of OK-432-Induced Helper T Cell 1 Response by 5-FU and X-ray Irradiation[J]. Neoplasia, 2013, 15(7): 805−814. DOI: 10.1593/neo.13488.
    [11] Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action[J]. Eur J Pharmacol, 2014, 740: 364−378. DOI: 10.1016/j.ejphar.2014.07.025.
    [12] Chi DC, Brogan F, Turenne I, et al. Gemcitabine-Induced Pulmonary Toxicity[J]. Anticancer Res, 2012, 32(9): 4147−4149.
    [13] Chan L, Gao P, Zhou W, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge switching ability for precise tumor radiosensitization[J]. ACS Nano, 2018, 12(12): 12401. DOI: 10.1007/s13246−012−0143−3.
    [14] Yamaguchi H, Hayama K, Sasagawa I, et al. HER2-Targeted Multifunctional Silica Nanoparticles Specifically Enhance the Radiosensitivity of HER2-Overexpressing Breast Cancer Cells[J/OL]. Int J Mol Sci, 2018, 19(3): 908[2019-06-02]. https://www.mdpi.com/1422−0067/19/3/908. DOI: 10.3390/ijms19030908.
    [15] Xu H, Wang TT, Yang CB, et al. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation[J/OL]. Adv Funct Mater, 2018, 28(14)[2019-06-02]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201707140. DOI: 10.1002/adfm.201707140.
    [16] 常静林, 张玉民, 董辉. 金纳米粒子在肿瘤放疗中的研究进展[J]. 国际放射医学核医学杂志, 2018, 42(3): 261−264. DOI: 10.3760/cma.j.issn.1673−4114.2018.03.012.Chang JL, Zhang YM, Dong H. Advances in the application of gold nanoparticles in tumor radiotherapy[J]. Int J Radiat Med Nucl Med, 2018, 42(3): 261−264. DOI: 10.3760/cma.j.issn.1673−4114.2018.03.012.
    [17] Zhang XD, Luo ZT, Chen J, et al. Ultrasmall Au<sub>10−12</sub>(SG)<sub>10−12</sub> Nanomolecules for High Tumor Specificity and Cancer Radiotherapy[J]. Adv Mater, 2014, 26(26): 4565−4568. DOI: 10.1002/adma.201400866.
    [18] Zhou YW, Hu Y, Sun WJ, et al. Radiotherapy-Sensitized Tumor Photothermal Ablation Using γ-Polyglutamic Acid Nanogels Loaded with Polypyrrole[J]. Biomacromolecules, 2018, 19(6): 2034−2042. DOI: 10.1021/acs.biomac.8b00184.
    [19] Huang PS, Zhang YM, Wang WW, et al. Co-delivery of doxorubicin and <sup>131</sup>I by thermosensitive micellar-hydrogel for enhanced <italic>in situ</italic> synergetic chemoradiotherapy[J]. J Control Release, 2015, 220: 456−464. DOI: 10.1016/j.jconrel.2015.11.007.
    [20] Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes[J]. Eur J Pharm Biopharm, 2007, 65(3): 259−269. DOI: 10.1016/j.ejpb.2006.11.009.
    [21] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance[J]. Adv Drug Deliv Rev, 2012, 64(S1): S37−48. DOI: 10.1016/j.addr.2012.09.013.
    [22] Huang CY, Ju DT, Chang CF, et al. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer[J]. BioMedicine, 2017, 7(4): 12−23. DOI: 10.1051/bmdcn/2017070423.
    [23] Xu WH, Han M, Dong Q, et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation[J]. Int J Nanomedicine, 2012, 7: 2661−2671. DOI: 10.2147/IJN.S30445.
    [24] You H, Fu SZ, Qin XH, et al. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma[J]. Colloids Surf B Biointerfaces, 2016, 140: 150−160. DOI: 10.1016/j.colsurfb.2015.12.034.
    [25] Shih YH, Peng CL, Chiang PF, et al. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma[J]. Int J Nanomedicine, 2015, 10: 7443−7454. DOI: 10.2147/IJN.S91008.
    [26] Zhao KJ, Ke WD, Yin W, et al. Facile Preparation and Radiotherapy Application of an Amphiphilic Block Copolymer Radiosensitizer[J]. ACS Macro Lett, 2017, 6(5): 556−560. DOI: 10.1021/acsmacrolett.7b00196.
    [27] Frank LA, Contri RV, Beck RCR, et al. Improving drug biological effects by encapsulation into polymeric nanocapsules[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2015, 7(5): 623−639. DOI: 10.1002/wnan.1334.
    [28] Yang YS, Carney RP, Stellacci F, et al. Enhancing Radiotherapy by Lipid Nanocapsule-Mediated Delivery of Amphiphilic Gold Nanoparticles to Intracellular Membranes[J]. ACS Nano, 2014, 8(9): 8992−9002. DOI: 10.1021/nn502146r.
    [29] Lin LT, Chang CH, Yu HL, et al. Evaluation of the Therapeutic and Diagnostic Effects of PEGylated Liposome-Embedded <sup>188</sup>Re on Human Non-Small Cell Lung Cancer Using an Orthotopic Small-Animal Model[J]. J Nucl Med, 2014, 55(11): 1864−1870. DOI: 10.2967/jnumed.114.140418.
    [30] Jaffray D, Kupelian P, Djemil T, et al. Review of image-guided radiation therapy[J]. Expert Rev Anticancer Ther, 2007, 7(1): 89−103. DOI: 10.1586/14737140.7.1.89.
    [31] Yao MH, Ma M, Chen Y, et al. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy[J]. Biomaterials, 2014, 35(28): 8197−8205. DOI: 10.1016/j.biomaterials.2014.06.010.
    [32] Rocca JD, Werner ME, Kramer SA, et al. Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy[J]. Nanomedicine, 2015, 11(1): 31−38. DOI: 10.1016/j.nano.2014.07.004.
    [33] Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review[J]. J Adv Res, 2015, 6(2): 105−121. DOI: 10.1016/j.jare.2013.07.006.
    [34] Richter A, Paschew G, Klatt S, et al. Review on Hydrogel-Based pH Sensors and Microsensors[J/OL]. Sensors, 2008, 8(1): 561−581[2019-06-02]. https://www.mdpi.com/1424−8220/8/1/561. DOI: 10.3390/s8010561.
    [35] Schaal JL, Li XH, Mastria E, et al. Injectable polypeptide micelles that form radiation crosslinked hydrogels <italic>in situ</italic> for intratumoral radiotherapy[J]. J Control Release, 2016, 228: 58−66. DOI: 10.1016/j.jconrel.2016.02.040.
    [36] Li TT, Zhang MF, Wang JZ, et al. Thermosensitive Hydrogel Co-Loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy[J/OL]. AAPS J, 2015, 18(1): 146−155[2019-06-02]. https://link.springer.com/article/10.1208/s12248−015−9828−3. DOI: 10.1208/s12248-015-9828-3.
    [37] Peng CL, Shih YH, Liang KS, et al. Development of <italic>in Situ</italic> Forming Thermosensitive Hydrogel for Radiotherapy Combined with Chemotherapy in a Mouse Model of Hepatocellular Carcinoma[J]. Mol Pharm, 2013, 10(5): 1854−1864. DOI: 10.1021/mp3006424.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4071) PDF downloads(22) Cited by()

Related
Proportional views

Research progress on polymer nanomaterials for tumor radiotherapy

    Corresponding author: Jianfeng Liu, lewis78@163.com
  • Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China

Abstract: Radiotherapy is one of the three conventional methods for the treatment of malignant tumors. However, its expected effect is not often achieved because of some limitations, such as normal tissue damage by high radiation dose and the radiation resistance of tumor cells. Thus, exploring new strategies for new radiosensitizers and radio-chemotherapy agents has become a research focus to improve the efficacy of radiotherapy and reduce its side effects on normal tissues. Polymer nanomaterials have broad application prospects in improving the effect of radiotherapy because of their excellent biocompatibility and physiological stability. This article reviews the research progress on polymer nanomaterials for radiosensitization.

    HTML

  • 据世界卫生组织统计,2018年,全世界共报道了1810万例癌症病例,因癌症而病死的人数多达960万[1]。目前,临床上治疗恶性肿瘤的主要方法包括手术切除、放疗和化疗等,其中放疗是最常见且最有效的治疗手段之一。据报道,超过50%的癌症患者曾使用放疗控制病情[2]。放疗主要通过电离辐射直接破坏DNA分子或者间接裂解水分子,形成活性氧自由基(reactive oxygen species,ROS)作用于DNA,杀伤肿瘤细胞[3],其可以通过外部的射线直接对肿瘤组织进行外照射或是利用体内引入的放射性核素衰变发射出射线进行内照射。但是,肿瘤内乏氧微环境导致的辐射抵抗现象和射线对正常组织的损伤作用,严重限制了放疗的效果及其长期应用[4]。新型放疗增敏剂的开发成为近年来的研究热点。一方面,放疗增敏剂可以增强肿瘤细胞对放疗的敏感性,提高射线对肿瘤细胞的杀伤效率,并降低对正常组织的辐射损伤。另一方面,放化疗联合策略可在减轻对正常组织不良作用的同时增强对肿瘤的治疗效果。随着纳米科学技术的快速发展,越来越多的高分子纳米材料凭借其独特的物理化学和生物学性质(如高效负载药物能力、优异的生物相容性和生理稳定性等),在肿瘤放疗领域显示出了良好的潜力[5-6]。笔者就高分子纳米材料用于肿瘤放疗增敏的研究进展进行综述。

1.   放疗
  • 放疗是指利用射线治疗肿瘤的一种局部治疗方式。但因放疗过程中肿瘤内部乏氧抵抗和对正常组织的损伤作用,放疗的效果并未达到预期。放疗增敏是指应用物理手段或药物制剂等方法调节肿瘤组织对辐射的敏感性,增强射线对肿瘤细胞的杀伤效应,从而提高对肿瘤的控制率和治愈率。目前常规的放疗增敏剂主要是小分子化学药物,如5-氟脲嘧啶、铂类(如顺铂、卡铂)、吉西他滨等,它们可以通过不同的作用机制(如抑制DNA的合成、促进DNA双链断裂、调控细胞周期等)提升肿瘤细胞的放疗敏感性[7-9]。但这些常规放疗增敏剂也存在一些弊端,如5-氟脲嘧啶的药物半衰期很短,在其结合射线治疗肿瘤时需要长期静脉滴注给药,容易形成血栓并导致院内感染[10];在顺铂用于放疗的临床试验中,患者易出现恶心、呕吐、神经毒性、耳毒性和肾毒性等不良反应[11];骨髓抑制是吉西他滨在治疗中最常见的不良反应,并且约25%的行吉西他滨治疗的患者会出现呼吸困难[12]。因此,开发新型的放疗增敏剂在临床上具有重要意义,吸引了越来越多放疗领域研究者的关注。除此之外,联合治疗的策略也成为近年来肿瘤治疗的热点。化疗联合放疗的治疗策略,不仅可以降低照射剂量,减少对正常组织的损伤,还可以减少化疗药物所带来的不良反应,更重要的是可以提高对肿瘤的治疗效果。

2.   高分子纳米材料为放疗提供了新机遇
  • 纳米材料因其具有良好的生物相容性、固有的放射敏感性、多种药物的高负载能力,以及在肿瘤组织中的增强渗透与滞留效应等物理化学性质,被广泛应用于提高放疗疗效的研究中[13-16]。以往,纳米材料介导放疗增敏的研究主要集中于使用高原子序数纳米粒子(如金、银和铋等)增强细胞内的辐射能量沉积。如Zhang等[17]合成的以谷胱甘肽为壳、金原子为核心的金纳米簇Au10−12(SG)10−12,其可通过增强辐射沉积、产生具有杀伤作用的ROS来抑制肿瘤的生长,展现出了良好的放疗增敏效果。近年来,高分子纳米材料作为小分子化疗药物运送载体,通过放化疗联合增强杀死肿瘤细胞的能力:利用化学键合、物理包覆等方式负载水溶性差的化疗小分子药物到达肿瘤组织后进行外照射,通过抑制DNA的修复、产生具有杀伤作用的ROS,提高对肿瘤的杀伤作用;将放射性核素靶向运送到肿瘤部位进行内照射,减少了对正常组织的不良作用,提高了放射性核素在体内的滞留时间,使其衰变发射出的射线能更好地达到治疗肿瘤的目的。高分子纳米材料不仅可以通过增强渗透与滞留效应在肿瘤部位富集,提高对肿瘤组织的靶向作用,还可以与化疗手段协同治疗,从而提高对肿瘤的治疗效果[18-19]

3.   高分子纳米材料的常见类型

    3.1.   聚合物胶束

  • 聚合物胶束是由两亲性嵌段聚合物在水溶液中自组装形成的一种热力学稳定的胶体溶液[20]。由于其在生物医学领域展现出非常好的应用前景,如药物输送体系等[21],聚合物胶束在近年来已成为研究最为广泛的一类纳米载体。小分子化学药物不仅存在稳定性差和生物利用度低的问题,而且还会对正常组织产生很多不良作用,如骨髓抑制、心脏毒性和黏液炎等[22]。而利用聚合物胶束作为小分子化学药物的载体,可有效地增强药物的稳定性,延长药物在体内的循环时间,提高肿瘤细胞对药物的吸收率,改善药物在体内的分布,从而提高药物的治疗效果并降低其带来不良反应的风险。Xu等[23]通过溶剂蒸发法将小分子化疗药物阿霉素负载于聚乙二醇-聚环己内酯和普朗尼克P105组成的复合胶束上,用于提高治疗肿瘤的效果,研究结果表明,与游离的阿霉素相比,利用复合胶束包载阿霉素明显提高了药物在肺癌细胞内的积累,并且显著增强了电离辐射对细胞的杀伤效果。You等[24]利用聚乙二醇-b-聚环己内酯构成的胶束负载羟基喜树碱,并在胶束外层修饰叶酸分子,结果发现这种聚合物胶束结合放疗后的抗肿瘤效果明显强于单一的羟基喜树碱和羟基喜树碱+放疗,而且叶酸分子的修饰可以提高对肿瘤细胞的摄取,从而进一步提高疗效。

    另外,内照射与化疗药物也可提高放化疗联合治疗肿瘤的效果。Shih等[25]采用放射性核素188Re标记的多功能胶束负载阿霉素,对肝癌荷瘤小鼠模型进行了放化疗联合的研究,结果表明,与对照组、188Re组、阿霉素组相比,经188Re-阿霉素胶束组治疗后的小鼠肿瘤体积最小,存活时间明显延长。

    聚合物胶束不仅可以通过物理包裹作用负载小分子化疗药物,还能以化学键合的形式负载小分子放疗增敏剂。Zhao等[26]利用点击化学反应将具有放疗增敏作用的硝基咪唑类化合物修饰到聚乙二醇-b-聚(γ-炔丙基-L-谷氨酸)的侧链上,然后通过自组装技术制备得到了粒径60 nm左右的核壳结构胶束,他们发现,经硝基咪唑修饰的聚合物胶束对于乏氧肿瘤细胞的放疗增敏效果明显优于商品化的放疗增敏药物甘氨双唑钠,而且能够在荷瘤小鼠的肿瘤部位大量积累和长时间滞留,利用低剂量(4 Gy)的射线照射即可完全抑制肿瘤的生长。

  • 3.2.   聚合物纳米胶囊

  • 聚合物纳米胶囊是在纳米尺度(1~100 nm)上具有核壳结构的聚合物包裹体[20]。聚合物纳米胶囊可在内部负载药物,其核壳结构可控制药物释放,避免药物与正常组织直接接触,提高药物的生物利用度并减轻药物不良反应[27]。Yang等[28]发现,在两亲性金纳米颗粒表面包裹聚乙二醇修饰的多层脂质形成纳米胶囊后,能更好地将该两亲性金纳米颗粒转运到肿瘤细胞中,以提高对肿瘤的放疗效果;他们还发现,与单纯照射组相比,该纳米胶囊联合4 Gy放疗可使肿瘤细胞的凋亡率提高3倍以上,并且比游离的两亲性金纳米颗粒具有更强的放疗增敏作用。Lin等[29]188Re与N, N-二(2-巯基乙基)-N′, N′二乙基乙二胺结合后负载于聚乙二醇化的脂质体,结果发现该脂质体可有效地积累在人肺癌细胞NCI-H292异种移植瘤中,而不被正常肺组织摄取,并且188Re脂质体对肺癌细胞的生长具有明显抑制作用,可使荷瘤小鼠的寿命延长2倍以上。

    成像引导有助于精准定位肿瘤,达到精确放疗,从而减少对周围正常组织的损害[30]。Yao等[31]利用简单高效的水/油/水乳化法成功地将疏水硫化铋(Bi2S3)纳米粒子引入聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]纳米胶囊中,结果发现荷瘤小鼠经尾静脉注射Bi2S3/PLGA纳米胶囊10 min后,肿瘤病灶超声信号逐渐增强,这是因为外部的弹性聚合物壳层使该纳米胶囊具有良好的超声造影成像能力。此外,该研究结果表明,利用Bi2S3/PLGA纳米胶囊结合放疗能显著抑制肿瘤细胞的增殖,并在达到类似治疗效果的同时,减少了辐射剂量。同时,Bi2S3/PLGA胶囊能够增强高强度聚焦超声的治疗效果,因此其可以作为高强度聚焦超声和(或)放疗的协同剂。

    利用聚合物纳米胶囊同样可以实现放化疗联合治疗。Rocca等[32]采用碱催化的溶胶-凝胶聚合法合成的聚倍半硅氧烷交联的顺铂前药纳米胶囊(具有极高的顺铂负载量和触发释放性能,可进行放疗与化疗的联合治疗),以腺癌人类肺泡基底上皮细胞A549和大细胞肺癌细胞NCI-H460移植瘤荷瘤小鼠为模型进行实验,结果发现,与顺铂相比,该纳米胶囊在相同放疗条件下具有更好的延缓肿瘤生长的能力,显示出更好的放化疗效果。

  • 3.3.   聚合物水凝胶

  • 聚合物水凝胶是由一个或多个单体通过简单反应产生交联的聚合物三维网络,在水环境下会发生吸水溶胀[33]。水凝胶可在各种物理刺激(如温度、光、压力等)和化学刺激(如pH值、溶剂组成、离子强度等)下进行剧烈的体积转变,具有可控响应性[34]。Schaal等[35]发明了一种可近距离有效治疗肿瘤的放疗增敏新方法,即用放射性核素131I标记的弹性蛋白样聚多肽(elastin-like polypeptide,ELP)组成热敏胶束(131I-ELP),在肿瘤内形成原位水凝胶,研究结果显示,经131I-ELP治疗后的移植瘤裸鼠平均存活时间较对照组明显延长,且注射72 h后正常组织无明显放射性累积。这种ELP可以通过化学方法结合不同的放射性核素形成原位水凝胶,在实现个体化肿瘤治疗中表现出巨大潜力。

    聚合物水凝胶也可通过自身稳定的网络状结构作为药物运送体系。Li等[36]利用普兰尼克 F127温敏性水凝胶负载化疗药物阿霉素和聚乙二醇修饰的金纳米粒子,可在肿瘤部位实现阿霉素和金纳米粒子的持续稳定释放。体外实验结果表明,在辐照下,阿霉素和金纳米粒子联合治疗对小鼠黑色素瘤细胞(B16)和人肝癌细胞(HepG2)均有明显的抑制作用。体内抑瘤实验结果表明,与空白对照组和单纯放疗组相比,负载金纳米粒子和阿霉素的聚合物水凝胶联合放疗具有更好的肿瘤抑制作用。利用聚合物水凝胶将放射性同位素与化疗药物结合,也是治疗恶性肿瘤的有效方法。Peng等[37]构建了一种含有放射性核素治疗剂(188Re-锡胶体)和化疗药物(阿霉素脂质体)的热敏聚合物水凝胶给药系统,热转变后的水凝胶将放射性核素188Re滞留在肿瘤内,其在肿瘤中的停留时间明显长于放射性药物Na188ReO4;更重要的是,该水凝胶的肿瘤抑制效果明显优于188Re-锡胶体水凝胶和阿霉素脂质体水凝胶,治疗后的第32天肿瘤消退率高达80%。

4.   小结
  • 综上所述,高分子纳米材料因其特有的性质在提高肿瘤放疗疗效中呈现出巨大的优势和潜能。为增强肿瘤放疗效果,以高分子纳米材料为基础构建新型放疗增敏剂及实现放化疗联合的研究越来越多。与传统放疗增敏剂相比,基于高分子纳米材料的放疗增敏剂具有更高的生物相容性、更好的靶向性以及更少的不良反应。放化疗联合的方法较传统方法有更优异的治疗效果。因此,随着对高分子纳米材料研究的深入,其将会在肿瘤放疗中发挥更突出的作用。

    利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

    作者贡献声明 侯小雪负责论文的撰写;黄帆、杨丽军负责论文最终版本的修订;刘鉴峰负责论文撰写思路的设计。

Reference (37)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return