Volume 44 Issue 6
Aug.  2020
Article Contents

Citation:

The clinical progress of cadmium-zinc-telluride-based dedicated cardiac SPECT cameras

  • Myocardial perfusion imaging plays an important role in the diagnosis and treatment of patients with known or suspected coronary artery disease. The cadmium-zinc-telluride (CZT)-based dedicated cardiac SPECT (called CZT-SPECT) with high resolution and photon sensitivity reduces radiation exposure and imaging time while improving image quality and enhancing the value of SPECT myocardial perfusion imaging in clinical practice. The review elaborates the clinical progress of CZT-SPECT.
  • 加载中
  • [1] Heo R, Nakazato R, Kalra D, et al. Noninvasive Imaging in Coronary Artery Disease[J]. Semin Nucl Med, 2014, 44(5): 398−409. DOI: 10.1053/j.semnuclmed.2014.05.004.
    [2] Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation[J]. J Nucl Cardiol, 2018, 25(5): 1784−1846. DOI: 10.1007/s12350−018−1283−y.
    [3] Hirshfeld Jr JW, Ferrari VA, Bengel FM, et al. 2018 ACC/HRS/NASCI/SCAI/SCCT Expert Consensus Document on Optimal Use of Ionizing Radiation in Cardiovascular Imaging: Best Practices for Safety and Effectiveness: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways[J]. J Am Coll Cardiol, 2018, 71(24): e283−e351. DOI: 10.1016/j.jacc.2018.02.016.
    [4] Einstein AJ, Blankstein R, Andrews H, et al. Comparison of Image Quality, Myocardial Perfusion, and Left Ventricular Function Between Standard Imaging and Single-Injection Ultra-Low-Dose Imaging Using a High-Efficiency SPECT Camera: The MILLISIEVERT Study[J]. J Nucl Med, 2014, 55(9): 1430−1437. DOI: 10.2967/jnumed.114.138222.
    [5] Nkoulou R, Fuchs T, Pazhenkottil AP, et al. High efficiency gamma camera enables ultra-low fixed dose stress/rest myocardial perfusion imaging[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 218−224. DOI: 10.1093/ehjci/jey077.
    [6] Oddstig J, Hedeer F, Jögi J, et al. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera[J]. J Nucl Cardiol, 2013, 20(1): 38−44. DOI: 10.1007/s12350−012−9634−6.
    [7] Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation[J]. Eur J Nucl Med Mol Imaging, 2010, 37(4): 773−778. DOI: 10.1007/s00259−009−1375−7.
    [8] Tanaka H, Chikamori T, Hida S, et al. Comparison of Myocardial Perfusion Imaging Between the New High-Speed Gamma Camera and the Standard Anger Camera[J]. Circ J, 2013, 77(4): 1009−1017. DOI: 10.1253/circj.CJ−12−1093.
    [9] Sharir T, Pinskiy M, Pardes A, et al. Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera[J]. J Nucl Cardiol, 2016, 23(1): 11−20. DOI: 10.1007/s12350−015−0130−7.
    [10] Chikamori T, Goto K, Hida S, et al. Diagnostic performance of a semiconductor gamma-camera system as studied by multicenter registry[J]. J Cardiol, 2017, 69(2): 449−455. DOI: 10.1016/j.jjcc.2016.02.020.
    [11] Gimelli A, Rossi G, Landi P, et al. Stress/Rest Myocardial Perfusion Abnormalities by Gated SPECT: Still the Best Predictor of Cardiac Events in Stable Ischemic Heart Disease[J]. J Nucl Med, 2009, 50(4): 546−553. DOI: 10.2967/jnumed.108.055954.
    [12] Engbers EM, Timmer JR, Mouden M, et al. Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease[J]. J Nucl Med, 2017, 58(9): 1459−1463. DOI: 10.2967/jnumed.116.188516.
    [13] Lima R, Peclat T, Soares T, et al. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera[J]. J Nucl Cardiol, 2017, 24(1): 245−251. DOI: 10.1007/s12350−016−0618−9.
    [14] Murthy VL, Bateman TM, Beanlands RS, et al. Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC[J]. J Nucl Cardiol, 2018, 25(1): 269−297. DOI: 10.1007/s12350−017−1110−x.
    [15] Abbott BG, Case JA, Dorbala S, et al. Contemporary Cardiac SPECT Imaging —Innovations and Best Practices: An Information Statement from the American Society of Nuclear Cardiology[J]. Circ Cardiovasc Imaging, 2018, 11(9): e000020. DOI: 10.1161/HCI.0000000000000020.
    [16] Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic <sup>99m</sup>Tc-sestamibi CZT-SPECT camera: head to head comparison with <sup>15</sup>O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study[J]. Eur J Nucl Med Mol Imaging, 2018, 45(7): 1079−1090. DOI: 10.1007/s00259−018−3958−7.
    [17] Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using <sup>99m</sup>Tc-Tetrofosmin: Head-to-Head Comparison with <sup>13</sup>N-Ammonia PET[J]. J Nucl Med, 2016, 57(12): 1887−1892. DOI: 10.2967/jnumed.115.165498.
    [18] Ben-Haim S, Murthy VL, Breault C, et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study[J]. J Nucl Med, 2013, 54(6): 873−879. DOI: 10.2967/jnumed.112.109652.
    [19] Miyagawa M, Nishiyama Y, Uetani T, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score[J]. Int J Cardiol, 2017, 244: 347−353. DOI: 10.1016/j.ijcard.2017.06.012.
    [20] Shiraishi S, Sakamoto F, Tsuda N, et al. Prediction of Left Main or 3-Vessel Disease Using Myocardial Perfusion Reserve on Dynamic Thallium-201 Single-Photon Emission Computed Tomography With a Semiconductor Gamma Camera[J]. Circ J, 2015, 79(3): 623−631. DOI: 10.1253/circj.CJ−14−0932.
    [21] Ben Bouallegue F, Roubille F, Lattuca B, et al. SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements[J]. J Nucl Med, 2015, 56(11): 1712−1717. DOI: 10.2967/jnumed.114.143164.
    [22] Naya M, Murthy VL, Taqueti VR, et al. Preserved Coronary Flow Reserve Effectively Excludes High-Risk Coronary Artery Disease on Angiography[J]. J Nucl Med, 2014, 55(2): 248−255. DOI: 10.2967/jnumed.113.121442.
    [23] Osborne MT, Bajaj NS, Taqueti VR, et al. Taqueti. Coronary Microvascular Dysfunction Identifies Patients at High Risk of Adverse Events Across Cardiometabolic Diseases[J]. J Am Coll Cardiol, 2017, 70(22): 2835−2837. DOI: 10.1016/j.jacc.2017.09.1104.
    [24] Bajaj NS, Osborne MT, Gupta A, et al. Coronary Microvascular Dysfunction and Cardiovascular Risk in Obese Patients[J]. J Am Coll Cardiol, 2018, 72(7): 707−717. DOI: 10.1016/j.jacc.2018.05.049.
    [25] Bravo PE, Bergmark BA, Vita T, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy[J]. Eur Heart J, 2018, 39(4): 316−323. DOI: 10.1093/eurheartj/ehx683.
    [26] Fricke H, Fricke E, Weise R, et al. A Method to Remove Artifacts in Attenuation-Corrected Myocardial Perfusion SPECT Introduced by Misalignment Between Emission Scan and CT-Derived Attenuation Maps[J]. J Nucl Med, 2004, 45(10): 1619−1625.
    [27] Ito S, Endo A, Okada T, et al. Comparison of CTAC and prone imaging for the detection of coronary artery disease using CZT SPECT[J]. Ann Nucl Med, 2017, 31(8): 629−635. DOI: 10.1007/s12149−017−1194−z.
    [28] Nishiyama Y, Miyagawa M, Kawaguchi N, et al. Combined Supine and Prone Myocardial Perfusion Single-Photon Emission Computed Tomography With a Cadmium Zinc Telluride Camera for Detection of Coronary Artery Disease[J]. Circ J, 2014, 78(5): 1169−1175. DOI: 10.1253/circj.CJ−13−1316.
    [29] Taasan V, Wokhlu A, Taasan MV, et al. Comparative accuracy of supine-only and combined supine-prone myocardial perfusion imaging in men[J]. J Nucl Cardiol, 2016, 23(6): 1470−1476. DOI: 10.1007/s12350−015−0358−2.
    [30] Chawla D, Rahaby M, Amin AP, et al. Soft tissue attenuation patterns in stress myocardial perfusion SPECT images: A comparison between supine and upright acquisition systems[J]. J Nucl Cardiol, 2011, 18(2): 281−290. DOI: 10.1007/s12350−010−9336−x.
    [31] Ben-Haim S, Almukhailed O, Neill J, et al. Clinical value of supine and upright myocardial perfusion imaging in obese patients using the D-SPECT camera[J]. J Nucl Cardiol, 2014, 21(3): 478−485. DOI: 10.1007/s12350−014−9853−0.
    [32] Nakazato R, Slomka PJ, Fish M, et al. Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: Results of a multi-center study[J]. J Nucl Cardiol, 2015, 22(2): 266−275. DOI: 10.1007/s12350−014−9984−3.
    [33] Barone-Rochette G, Zoreka F, Djaileb L, et al. Diagnostic value of stress thallium-201/rest technetium-99m-sestamibi sequential dual isotope high-speed myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis[J]. J Nucl Cardiol, 2018, 26(4): 1269−1279. DOI: 10.1007/s12350−018−1189−8.
    [34] Hindorf C, Oddstig J, Hedeer F, et al. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera[J]. J Nucl Cardiol, 2014, 21(4): 695−702. DOI: 10.1007/s12350−014−9897−1.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4156) PDF downloads(44) Cited by()

Related
Proportional views

The clinical progress of cadmium-zinc-telluride-based dedicated cardiac SPECT cameras

    Corresponding author: Hongcheng Shi, shihongcheng163@163.com
  • Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Abstract: Myocardial perfusion imaging plays an important role in the diagnosis and treatment of patients with known or suspected coronary artery disease. The cadmium-zinc-telluride (CZT)-based dedicated cardiac SPECT (called CZT-SPECT) with high resolution and photon sensitivity reduces radiation exposure and imaging time while improving image quality and enhancing the value of SPECT myocardial perfusion imaging in clinical practice. The review elaborates the clinical progress of CZT-SPECT.

    HTML

  • 心肌灌注显像(myocardial perfusion imaging,MPI)是一种无创性检查技术,广泛应用于冠状动脉粥样硬化性心脏病(简称冠心病)的诊断及预后预测等[1]。但用于MPI的传统SPECT面临着诸多挑战,如探测器的灵敏度低、分辨率有限,无法进行动态显像,难以显示和识别小病灶,显像剂剂量较大,成像时间长,患者易发生位移等。应用碲锌镉(cadmium-zinc-telluride,CZT)晶体作为探测器的心脏专用SPECT(简称CZT-SPECT)采用新的半导体探测器、准直器和重建算法,达到了降低显像剂剂量、缩短采集时间、改善图像质量和扩展临床应用范围等目的。笔者对CZT-SPECT的临床应用进展进行综述。

1.   设备硬件特色与优势
  • CZT-SPECT的成像原理为γ射线与CZT晶体作用后产生电子与空穴对,带负电的电子与带正电的空穴对在电场作用下向不同电极运动形成电脉冲信号,信号幅度为电子-空穴对的数量,并与入射的γ射线能量成正比。

    CZT晶体能够直接进行光电转化,无需光电倍增管,减少了转换过程中的信号损失;另外,其能量分辨率高,并采用像素化和小尺寸的设计,提高了空间分辨率。CZT-SPECT还采用了高灵敏度准直器以及特定的重建方法,以补偿高灵敏度准直器造成的分辨率损失[2]。与传统应用碘化钠(NaI)晶体的SPECT相比,CZT-SPECT的空间分辨率提高了2倍,灵敏度提高了8~10倍,能量分辨率由11%提升至5.3%~5.4%。

2.   临床应用进展

    2.1.   减少显像剂剂量和缩短图像采集时间

  • 由于MPI是人均辐射剂量较高的核医学检查,近年来研究者十分关注降低辐射剂量的方法。CZT-SPECT性能的提升,可在保证甚至提高图像质量的前提下,降低显像剂剂量或缩短图像采集时间,并探索图像质量与显像剂剂量和采集时间之间的最佳平衡点[3]。当以体重指数(body mass index,BMI)确定采集时间时(BMI为20~22 kg/m2的患者,采集时间为9.7 min;BMI为22~24 kg/m2,采集时间为10.7 min;BMI为24~26 kg/m2,采集时间为13.0 min; BMI为26~28 kg/m2, 采集时间为14.1 min;BMI为28~30 kg/m2,采集时间为15.2 min),平均剂量可低至1.15 mSv(129.5 MBq)[4];当采用15 min的固定采集时间时,剂量可低至传统标准剂量的1/5[5]。当以体重确定剂量时(2.5 MBq/kg),负荷和静息采集时间可分别缩短至8 min和5 min[6];当采用传统标准剂量时,负荷和静息采集时间可分别缩短至3 min和2 min[7]

  • 2.2.   提高诊断的准确率和预后评估能力

  • 由于CZT-SPECT的灵敏度和空间分辨率的提高,可以得到更高的有效计数率,从而在降低显像剂剂量和(或)缩短检查时间的同时,获得更好的图像质量,显示和识别小病灶,提高诊断的准确率和预后评估能力。

    Tanaka等[8]对150例可疑或已确诊为冠心病的患者先后进行传统SPECT MPI(静息、负荷时间均为15 min)与CZT-SPECT MPI(静息时间3 min、负荷时间5 min)的比较,结果显示这两种方法所得缺损积分与心功能均有很好的相关性。Sharir等[9]的研究结果显示,CZT-SPECT采用极低剂量(<2 mSv)和标准剂量的采集方案对冠心病的诊断准确率相当。Chikamori等[10]对多中心的1000例可疑或已确诊为冠心病的患者进行不同的低剂量快速采集,以冠状动脉造影(coronary angiography,CAG)所示狭窄≥75%为标准,结果显示CZT-SPECT诊断冠心病的灵敏度为72%~76%、特异度为85%~89%、准确率为81%~85%。

    MPI检查结果是冠心病患者预后的独立预测因子[11]。 Engbers 等[12] 对4057 例行标准剂量 CZT-SPECT MPI的可疑冠心病患者随访2.4年,结果显示心脏事件的发生率与心肌灌注异常程度成正比。与心脏专用NaI-SPECT相比,CZT-SPECT也具有优势,Lima等[13]对3554例行心脏专用NaI-SPECT MPI(负荷370~444 MBq、静息555~666 MBq,均采集6 min)与CZT-SPECT MPI(负荷555 MBq、采集3 min,静息185 MBq、采集6 min)的可疑冠心病患者随访33个月,结果显示这两种心脏专用SPECT MPI检查结果都具有很高的预后评估价值,但CZT-SPECT MPI正常的患者,心脏事件的年发生率更低(0.5%对1.0%,P<0.01),其原因可能为更高的灵敏度带来更高的阴性预测价值。

  • 2.3.   测定心肌血流储备 ( coronary flow reserve, CFR )

  • 对于冠状动脉(简称冠脉)三支血管病变或微血管疾病,传统SPECT的诊断价值是有限的,通过测定心肌血流(myocardial blood flow,MBF)和CFR有助于识别冠脉三支病变和微血管病变[14]

    研究结果表明,PET拥有高计数率、高时间分辨率的断层成像系统和稳定成熟的衰减校正系统,以及13N-NH3·H2O、15O-H2O等显像剂所具备的优异摄取特性,因此,PET具有准确测定MBF和CFR的能力[15]。但PET的高成本和复杂操作限制了其在临床中的广泛应用。传统SPECT则受到自身性能的限制,无法完成对MBF的动态采集和定量分析。CZT-SPECT相较于传统SPECT的最大优势就在于其可以测定CFR。有研究结果发现,CZT-SPECT与使用13N-NH3·H2O、15O-H2O显像剂的PET所测定的MBF和CFR均有很高的一致性[16-17]

    由于SPECT MPI采用自身对照,当出现冠脉三支病变时,灌注的均匀缺损易导致对缺损程度的低估或假阴性的出现。由于冠脉狭窄的患者的CFR显著低于无冠脉狭窄的患者[18],因此,测定CFR可以提高诊断的准确率[19]。当以CAG所示冠脉狭窄≥75%为标准,设定CFR≤1.5为异常时,CZT-SPECT测定所得CFR诊断三支病变的灵敏度、特异度和准确率分别为86%、78%和80%[20]。当以冠脉狭窄≥50%且血流储备分数≤0.8为狭窄标准,设定CFR≤2.0为异常时,CZT-SPECT诊断三支梗阻血管的灵敏度、特异度和准确率分别为80%、85%和81%,检测出异常血流储备分数的灵敏度、特异度和准确率分别为89%、82%和85%[21]

    PET测得的CFR有助于排除CAG所示的高危冠心病[22],能够发现CAG无法发现的冠脉微血管功能障碍[23],可独立于传统风险因素识别处于不良事件风险中的患者[24],还能应用于心脏移植术后的心肌血管病变的诊断和预后[25]。虽然目前尚无CZT-SPECT测得MBF和CFR用于冠脉微血管病变的研究报道,但根据已有的PET测得CFR的应用价值的研究结果[14]以及CZT-SPECT与PET对MBF、CFR测量结果的一致性的结论[16-17],可以推断CZT-SPECT定量测量也具有同样的诊断和预后价值,这也会是未来CZT-SPECT的主要探索方向之一。

  • 2.4.   多体位采集

  • MPI存在衰减伪影导致假阳性的问题,为了减少衰减伪影,早期常采用变换体位的方法,但由于变换体位耗时、患者体感不好,导致可行性不高,之后采用外置放射源及CT衰减校正的方法,但其价值并未得到完全认可,还可能导致新的伪影及过度校正[26],而且外置放射源或CT还增加了成本和辐射剂量。CZT-SPECT的结构设计允许俯卧位、仰卧位到坐位任意角度采集,具有快速采集的优势,提高了患者的舒适度,使多体位采集具有可行性。

    Ito等[27]对72例仰卧位采集的患者增加俯卧位采集和CT衰减校正,结果显示这两种方法都能提高对下壁和下侧壁的诊断准确率。Nishiyama等[28]对270例患者进行总采集时间≤15 min的仰卧位联合俯卧位采集,结果发现诊断冠心病的特异度由单独仰卧位的50%提高至双体位的82%(P<0.001)。Taasan等[29]研究结果发现肥胖患者进行双体位采集所得益处更大。

    Chawla等[30]报道坐位可明显减少仰卧位采集出现的前壁伪影(伪影出现率:6.1%对35.4%,P<0.001),在女性患者中更为明显(9.5%对50.7%,P<0.001)。Ben-Haim等[31]对肥胖患者的研究结果显示,坐位MPI可识别出超过2/3的仰卧位图像中出现的伪影。Nakazato等[32]的研究结果显示,肥胖患者进行仰卧位联合坐位采集的诊断特异度由单独体位采集的57%提高至82%(P<0.01)。

  • 2.5.   多能窗采集

  • CZT-SPECT能量分辨率的提高,实现了超越传统SPECT的显像方案,如贯序多核素显像与多核素同时显像的方案。在负荷状态下MBF增大,与99Tcm相比,201Tl与心肌摄取率有更好的关联度。CZT-SPECT可以同时采集99Tcm201Tl且互不干扰,在缩短采集时间的同时还能降低显像剂剂量,而且同时采集能够避免不同时段采集的图像匹配不一致的问题,从而提高了诊断的准确率[33]

3.   不足

    3.1.   采集视野有限

  • 与大面积探测的多用途SPECT不同的是,CZT-SPECT的探测范围相对有限,因此对心脏的准确定位极为重要,定位出现偏差或心脏扩大(如扩张型心肌病)的患者,都可能导致心脏超出采集视野及出现伪影[34]

  • 3.2.   价格昂贵

  • CZT-SPECT的用途单一,相比于多用途SPECT,其价格相对昂贵,不适用于MPI检查需求小的检查中心。

4.   小结
  • 综上,CZT-SPECT应用于临床以来,展现了比传统SPECT更优良的性能,如降低显像剂剂量、缩短采集时间、改善图像质量等,在MBF动态采集的领域也进行了新的探索。但在CFR的临床应用价值、CFR与CAG和血流储备分数的联系与区别、多体位采集在伪影识别上的价值、实现采集时间和剂量与图像质量的最佳平衡的方案等方面,仍有待更多的临床试验进行探索与验证。

    利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

    作者贡献声明 陈炜佳负责论文的撰写;石洪成负责命题的提出、论文的审阅。

Reference (34)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return