Volume 47 Issue 3
Mar.  2023
Article Contents

Citation:

Research progress in positron imaging agents for Alzheimer disease

  • Alzheimer disease (AD) is one of the most common neurodegenerative diseases in the elderly. The symptoms of AD begin with mild memory difficulties and gradually evolve into cognitive dysfunction, complex daily activity disorders and so on. At present, the early and differential diagnosis of AD are still challenging, and biomarkers such as beta amyloid protein (Aβ) and Tau protein play a more and more important role in the diagnosis of AD. This paper reviews the positron imaging agents related to the diagnosis of AD, in order to let more medical workers understand the new nuclear medical imaging technology, so as to make early diagnosis and treatment of AD and delay the deterioration of the disease.
  • 加载中
  • [1] Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer's disease in the era of biomarkers[J]. Lancet Neurol, 2021, 20(3): 222−234. DOI: 10.1016/S1474-4422(20)30440-3.
    [2] Minoshima S, Mosci K, Cross D, et al. Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer's disease and other types of dementing disorders[J]. Semin Nucl Med, 2021, 51(3): 230−240. DOI: 10.1053/j.semnuclmed.2021.01.002.
    [3] Silva-Rodríguez J, Labrador-Espinosa MA, Moscoso A, et al. Differential effects of tau stage, Lewy body pathology, and substantia nigra degeneration on 18F-FDG PET patterns in clinical Alzheimer disease[J]. J Nucl Med, 2023, 64(2): 274−280. DOI: 10.2967/jnumed.122.264213.
    [4] Levin F, Ferreira D, Lange C, et al. Data-driven FDG-PET subtypes of Alzheimer's disease-related neurodegeneration[J/OL]. Alzheimers Res Ther, 2021, 13(1): 49[2022-09-21]. https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00785-9. DOI: 10.1186/s13195-021-00785-9.
    [5] Guan Z, Zhang M, Zhang Y, et al. Distinct functional and metabolic alterations of DMN subsystems in Alzheimer's disease: a simultaneous FDG-PET/fMRI study[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Mexico: IEEE, 2021: 3443-3446. DOI: 10.1109/EMBC46164.2021.9629472.
    [6] Nozadi SH, Kadoury S, The Alzheimer's Disease Neuroimaging Initiative. the Alzheimer's disease neuroimaging initiative. Classification of Alzheimer's and MCI patients from semantically parcelled PET images: a comparison between AV45 and FDG-PET[J]. Int J Biomed Imaging, 2018, 2018: 1247430. DOI: 10.1155/2018/1247430.
    [7] Vanhoutte M, Landeau B, Sherif S, et al. Evaluation of the early-phase [18F]AV45 PET as an optimal surrogate of [18F]FDG PET in ageing and Alzheimer's clinical syndrome[J/OL]. Neuroimage Clin, 2021, 31: 102750[2022-09-21]. https://www.sciencedirect.com/science/article/pii/S2213158221001947?via%3Dihub. DOI: 10.1016/j.nicl.2021.102750.
    [8] Jing J, Zhang F, Zhao L, et al. Correlation between brain 18F-AV45 and 18F-FDG PET distribution characteristics and cognitive function in patients with mild and moderate Alzheimer's disease[J]. J Alzheimers Dis, 2021, 79(3): 1317−1325. DOI: 10.3233/JAD-201335.
    [9] Li J, Antonecchia E, Camerlenghi M, et al. Correlation of [18F]florbetaben textural features and age of onset of Alzheimer's disease: a principal components analysis approach[J/OL]. EJNMMI Res, 2021, 11(1): 40[2022-09-21]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-021-00774-x. DOI: 10.1186/s13550-021-00774-x.
    [10] Yoon HJ, Kim BS, Jeong JH, et al. Dual-phase 18F-florbetaben PET provides cerebral perfusion proxy along with beta-amyloid burden in Alzheimer's disease[J/OL]. Neuroimage Clin, 2021, 31: 102773[2022-09-21]. https://www.sciencedirect.com/science/article/pii/S2213158221002175?via%3Dihub. DOI: 10.1016/j.nicl.2021.102773.
    [11] Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with flutemetamol for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI)[J/OL]. Cochrane Database Syst Rev, 2017, 11(11): CD012884[2022-09-21]. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012884/full. DOI: 10.1002/14651858.CD012884.
    [12] Xu M, Guo J, Gu J, et al. Preclinical and clinical study on [18F]DRKXH1: a novel β-amyloid PET tracer for Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 652−663. DOI: 10.1007/s00259-021-05421-0.
    [13] 武晓丹, 战莹, 郭佳, 等. 脑脊液生物标志物与11C-PIB PET/CT显像对阿尔茨海默病的诊断准确率及相关性研究[J]. 国际放射医学核医学杂志, 2021, 45(1): 3−9. DOI: 10.3760/cma.j.cn121381-202004019-00003.Wu XD, Zhan Y, Guo J, et al. Diagnostic accuracy and correlation between cerebrospinal fluid biomarkers and 11C-PIB PET/CT imaging in Alzheimer disease[J]. Int J Radiat Med Nucl Med, 2021, 45(1): 3−9. DOI: 10.3760/cma.j.cn121381-202004019-00003.
    [14] Jiménez-Bonilla JF, Quirce R, de Arcocha-Torres M, et al. A 5-year longitudinal evaluation in patients with mild cognitive impairment by 11C-PIB PET/CT: a visual analysis[J]. Nucl Med Commun, 2019, 40(5): 525−531. DOI: 10.1097/MNM.0000000000001004.
    [15] Furukawa K, Okamura N, Tashiro M, et al. Amyloid PET in mild cognitive impairment and Alzheimer's disease with BF-227: comparison to FDG-PET[J]. J Neurol, 2010, 257(5): 721−727. DOI: 10.1007/s00415-009-5396-8.
    [16] Kaneta T, Okamura N, Minoshima S, et al. A modified method of 3D-SSP analysis for amyloid PET imaging using [11C]BF-227[J]. Ann Nucl Med, 2011, 25(10): 732−739. DOI: 10.1007/s12149-011-0518-7.
    [17] Sharma AK, Schultz JW, Prior JT, et al. Coordination chemistry of bifunctional chemical agents designed for applications in 64Cu PET imaging for Alzheimer's disease[J]. Inorg Chem, 2017, 56(22): 13801−13814. DOI: 10.1021/acs.inorgchem.7b01883.
    [18] Bandara N, Sharma AK, Krieger S, et al. Evaluation of 64Cu-based radiopharmaceuticals that target Aβ peptide aggregates as diagnostic tools for Alzheimer's disease[J]. J Am Chem Soc, 2017, 139(36): 12550−12558. DOI: 10.1021/jacs.7b05937.
    [19] Sun L, Cho HJ, Sen S, et al. Amphiphilic distyrylbenzene derivatives as potential therapeutic and imaging agents for soluble and insoluble amyloid β aggregates in Alzheimer's disease[J]. J Am Chem Soc, 2021, 143(27): 10462−10476. DOI: 10.1021/jacs.1c05470.
    [20] Nguyen GAH, Liang C, Mukherjee J. [124I]IBETA: a new Aβ plaque positron emission tomography imaging agent for Alzheimer's disease[J/OL]. Molecules, 2022, 27(14): 4552[2022-09-21]. https://www.mdpi.com/1420-3049/27/14/4552. DOI: 10.3390/molecules27144552.
    [21] Gomar JJ, Tan G, Halpern J, et al. Increased retention of tau PET ligand [18F]-AV1451 in Alzheimer's disease psychosis[J/OL]. Transl Psychiatry, 2022, 12(1): 82[2022-09-21]. https://www.nature.com/articles/s41398-022-01850-z. DOI: 10.1038/s41398-022-01850-z.
    [22] Mak E, Nicastro N, Malpetti M, et al. Imaging tau burden in dementia with Lewy bodies using [18F]-AV1451 positron emission tomography[J]. Neurobiol Aging, 2021, 101: 172−180. DOI: 10.1016/j.neurobiolaging.2020.11.006.
    [23] Chien DT, Szardenings AK, Bahri S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808[J]. J Alzheimers Dis, 2014, 38(1): 171−184. DOI: 10.3233/JAD-130098.
    [24] Declercq L, Celen S, Lecina J, et al. Comparison of new tau PET-tracer candidates with [18F]T808 and [18F]T807[J]. Mol Imaging, 2016, 15: 1536012115624920. DOI: 10.1177/1536012115624920.
    [25] Villemagne VL, Furumoto S, Fodero-Tavoletti MT, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2014, 41(5): 816−826. DOI: 10.1007/s00259-013-2681-7.
    [26] Okamura N, Furumoto S, Fodero-Tavoletti MT, et al. Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET[J]. Brain, 2014, 137(6): 1762−1771. DOI: 10.1093/brain/awu064.
    [27] Chiotis K, Savitcheva I, Poulakis K, et al. [18F]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26(10): 5875−5887. DOI: 10.1038/s41380-020-0815-4.
    [28] Colato E, Chiotis K, Ferreira D, et al. Assessment of tau pathology as measured by 18F-THK5317 and 18F-flortaucipir PET and their relation to brain atrophy and cognition in Alzheimer's disease[J]. J Alzheimers Dis, 2021, 84(1): 103−117. DOI: 10.3233/JAD-210614.
    [29] Jeong HJ, Lee H, Lee SY, et al. [18F]THK5351 PET imaging in patients with mild cognitive impairment[J]. J Clin Neurol, 2020, 16(2): 202−214. DOI: 10.3988/jcn.2020.16.2.202.
    [30] Ezura M, Kikuchi A, Okamura N, et al. 18F-THK5351 positron emission tomography imaging in neurodegenerative Tauopathies[J/OL]. Front Aging Neurosci, 2021, 13: 761010[2022-09-21]. https://www.frontiersin.org/articles/10.3389/fnagi.2021.761010/full. DOI: 10.3389/fnagi.2021.761010.
    [31] Chen ST, Siddarth P, Merrill DA, et al. FDDNP-PET tau brain protein binding patterns in military personnel with suspected chronic traumatic encephalopathy[J]. J Alzheimers Dis, 2018, 65(1): 79−88. DOI: 10.3233/JAD-171152.
    [32] Krishnadas N, Huang K, Schultz SA, et al. Visually identified tau 18F-MK6240 PET patterns in symptomatic Alzheimer's disease[J]. J Alzheimers Dis, 2022, 88(4): 1627−1637. DOI: 10.3233/JAD-215558.
    [33] Leuzy A, Smith R, Ossenkoppele R, et al. Diagnostic performance of RO948 F 18 Tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders[J]. JAMA Neurol, 2020, 77(8): 955−965. DOI: 10.1001/jamaneurol.2020.0989.
    [34] Kroth H, Oden F, Molette J, et al. PI-2620 lead optimization highlights the importance of off-target assays to develop a PET tracer for the detection of pathological aggregated tau in Alzheimer's disease and other Tauopathies[J]. J Med Chem, 2021, 64(17): 12808−12830. DOI: 10.1021/acs.jmedchem.1c00861.
    [35] Teng E, Manser PT, Sanabria Bohorquez S, et al. Baseline [18F]GTP1 tau PET imaging is associated with subsequent cognitive decline in Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2021, 13(1): 196[2022-09-21]. https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00937-x. DOI: 10.1186/s13195-021-00937-x.
    [36] Hsu JL, Lin KJ, Hsiao IT, et al. The imaging features and clinical associations of a novel tau PET tracer-18F-APN1607 in Alzheimer disease[J]. Clin Nucl Med, 2020, 45(10): 747−756. DOI: 10.1097/RLU.0000000000003164.
    [37] Schröter N, Blazhenets G, Frings L, et al. Tau imaging in the 4-repeat-tauopathies progressive supranuclear palsy and corticobasal syndrome: a 11C-pyridinyl-butadienyl-benzothiazole 3 PET pilot study[J]. Clin Nucl Med, 2020, 45(4): 283−287. DOI: 10.1097/RLU.0000000000002949.
    [38] James ML, Belichenko NP, Shuhendler AJ, et al. [18F]GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer's disease[J/OL]. Theranostics, 2017, 7(6): 1422-1436[2022-09-21]. https://www.thno.org/v07p1422.htm. DOI: 10.7150/thno.17666.
    [39] Rauchmann BS, Brendel M, Franzmeier N, et al. Microglial activation and connectivity in Alzheimer disease and aging[J]. Ann Neurol, 2022, 92(5): 768−781. DOI: 10.1002/ana.26465.
    [40] Hu W, Pan D, Wang Y, et al. PET imaging for dynamically monitoring neuroinflammation in APP/PS1 mouse model using [18F]DPA714[J]. Front Neurosci, 2020, 14: 810. DOI: 10.3389/fnins.2020.00810.
    [41] Rejc L, Gómez-Vallejo V, Joya A, et al. Longitudinal evaluation of neuroinflammation and oxidative stress in a mouse model of Alzheimer disease using positron emission tomography[J/OL]. Alzheimers Res Ther, 2022, 14(1): 80[2022-09-21]. https://alzres.biomedcentral.com/articles/10.1186/s13195-022-01016-5. DOI: 10.1186/s13195-022-01016-5.
    [42] Malpetti M, Kievit RA, Passamonti L, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer's disease[J]. Brain, 2020, 143(5): 1588−1602. DOI: 10.1093/brain/awaa088.
    [43] Passamonti L, Rodríguez PV, Hong YT, et al. [11C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy[J]. Neurology, 2018, 90(22): e1989−e1996. DOI: 10.1212/WNL.0000000000005610.
    [44] Yokokura M, Terada T, Bunai T, et al. Depiction of microglial activation in aging and dementia: positron emission tomography with [11C]DPA713 versus [11C](R)PK11195[J]. J Cereb Blood Flow Metab, 2017, 37(3): 877−889. DOI: 10.1177/0271678X16646788.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3175) PDF downloads(21) Cited by()

Related
Proportional views

Research progress in positron imaging agents for Alzheimer disease

    Corresponding author: Wei Fu, 13977385850@126.com
  • Department of Nuclear Medicine, the Affiliated Hospital of Guilin Medical University, Guilin 541001, China

Abstract: Alzheimer disease (AD) is one of the most common neurodegenerative diseases in the elderly. The symptoms of AD begin with mild memory difficulties and gradually evolve into cognitive dysfunction, complex daily activity disorders and so on. At present, the early and differential diagnosis of AD are still challenging, and biomarkers such as beta amyloid protein (Aβ) and Tau protein play a more and more important role in the diagnosis of AD. This paper reviews the positron imaging agents related to the diagnosis of AD, in order to let more medical workers understand the new nuclear medical imaging technology, so as to make early diagnosis and treatment of AD and delay the deterioration of the disease.

    HTML

  • 阿尔茨海默病(Alzheimer disease,AD)的最初症状通常表现为健忘,随着病情的不断发展会进一步影响语言、运动能力和记忆等多种功能[1]。AD是一种进行性的神经退行性疾病,其特征是大脑中存在由过度磷酸化的Tau蛋白组成的细胞内神经原纤维缠结(neurofibrillary tangles,NFTs)和细胞外β淀粉样蛋白(beta amyloid protein,Aβ)斑块,这些蛋白质聚集体会引起神经病理学变化,导致突触和神经元细胞死亡,以及认知功能进行性丧失。目前AD尚无治愈方法,且其最终的诊断也只能通过尸检结果来确定。因此,AD的早期无创性诊断尤为重要。近年来,随着核医学技术的不断发展,已有多种正电子显像剂可用于AD的早期诊断和鉴别诊断,我们就AD诊断相关的正电子显像剂进行综述。

  • 1.   18F-FDG
    • 18F-FDG作为核医学显像中的“王牌”显像剂,除被应用于各种肿瘤的检查以外,还可被应用于AD的相关检查。大脑摄取18F-FDG水平的升高或降低说明局部神经功能发生障碍,能为各种神经退行性疾病提供鉴别诊断线索[2]。有研究结果显示,单纯AD患者与AD和路易体共病理患者均表现出高度相似的AD典型的颞顶低代谢水平,而在扣带岛征比值、区域性18F-FDG标准化摄取值比值(SUVR)和黑质神经元丢失方面没有差异;与单纯AD患者相比,单纯路易体痴呆(dementia with Lewy bodies,DLB)患者的枕部代谢水平更低、扣带岛征比值更高和黑质神经元丢失更容易[3]。Levin等[4]根据18F-FDG PET显像结果对AD神经退行性病变的不同亚型进行分类,确定了3种主要的低代谢亚型:(1)典型型,表现为典型的后颞顶叶低代谢水平;(2)边缘为主型,表现为年老和记忆为主的认知特征;(3)皮质主导型,其特征是相较于前2种亚型年龄更低,执行功能障碍更为严重。默认模式网络(default mode network,DMN)功能障碍在AD患者中较为常见,DMN的功能异质性与不同的认知功能有关,AD患者在前DMN和后DMN这2个DMN子系统中的病理生理变化也不同。Guan等[5]的研究结果显示,AD患者后DMN的功能连接强度显著减弱,而前DMN则无明显减弱,同时AD患者的前DMN和后DMN的葡萄糖代谢水平均明显降低。

    2.   Aβ蛋白特异性分子探针
    • 尽早识别轻度认知障碍(mild cognitive impairment,MCI)对延缓AD患者的病情进展至关重要。Nozadi等[6]发现4-[(E)-2-[6-[2-[2-(2-(18F)氟酰基乙氧基]乙氧基)乙氧基]吡啶-3-基]乙烯基]-N-甲基苯胺(简称18F-Florbetapir或18F-AV45)PET显像能够准确区分早期和晚期的MCI、AD以及健康受试者。18F-AV45 PET显像在诊断衰老、AD,减少辐射剂量和节约成本等方面比18F-FDG PET显像更具优势[7]。但18F-FDG脑区代谢水平降低可作为AD诊断的依据,而18F-AV45 PET显像却不能为评估AD提供有价值的信息[8]。通常将发病于65岁之前的AD称为早发性阿尔茨海默病(early-onset Alzheimer disease,EOAD),发病于65岁之后的AD称为迟发性阿尔茨海默病(late-onset Alzheimer disease,LOAD)。研究者发现4-[(E)-2-[4-[2-[2-(2-(18F)氟酰基乙氧基)乙氧基]乙氧基]苯基]乙烯基]-N-甲基苯胺(简称18F-Florbetaben、18F-FBB或18F-AV1)在EOAD患者颞前叶左侧外侧、额叶右侧眶前回、额叶右侧眶外侧回和颞上回左侧前部分高摄取,其可能作为诊断和鉴定EOAD的定量生物标志物[9]18F-AV1脑灌注试验结果显示,健康受试者和MCI患者的灌注量无差异,而在Aβ阳性AD患者中灌注量显著减少[10]。尽管2-[3-[18F]氟-4-(甲氨基)苯基]-1,3-苯并噻唑-6-醇(简称18F-Flutemetamol)已被美国食品药品监督管理局和欧洲药品管理局等监管机构批准用于评估神经退行性疾病患者的淀粉样蛋白负荷,然而通过评估从MCI到AD痴呆进展的243例患者的试验发现,其预测MCI到AD痴呆进展的灵敏度和特异度均不高,不推荐其在临床实践中常规使用[11]。Xu等[12]合成了5-(4-(6-(2-[18F]氟乙氧基)乙氧基)咪唑[1,2-α]吡啶-2-基)苯基(简称18F-DRKXH1)显像剂,在临床前研究中发现其在体内外与Aβ均具有高亲和力,随着研究的进一步深入,有望成为诊断AD的新型分子探针。

      脑脊液在溶质清除和维持脑内稳态中起重要作用,研究者发现11C标记的匹兹堡化合物B(11C-Pittsburg compound B,11C-PIB)可用于观察脑脊液动力学的病理变化[13]。Jiménez-Bonilla等[14]通过11C-PIB PET/CT显像研究了10例遗忘型MCI和4例非遗忘型MCI患者5年间病情的进展情况,发现11C-PIB阳性的遗忘型MCI患者大多进展为AD,而4例11C-PIB阴性的非遗忘型MCI患者中有1例发展为语义性痴呆。11C-PIB在白质中的非特异性摄取可能会限制其在临床中的应用,而2-(2-氟-6-甲基氨基吡啶-3-基)-苯并呋喃-5-醇(简称11C-AZD4694)在白质中的非特异性摄取更少,其在大脑中的代谢更快,是一种有前途的Aβ显像剂。有研究结果显示,相较于18F-FDG,2-(2-[2-二甲基噻唑-5-基]乙烯基)-6(-2[-氟乙氧基-苯并唑](简称11C-BF227)对AD患者和健康受试者的鉴别诊断具有更高的特异度和灵敏度[15]。Kaneta等[16]发现11C-BF227可区分健康受试者与AD和MCI患者之间的差异。

      近年来,大环螯合剂的金属配合物在医学中的应用越来越广泛。Sharma等[17]合成了64Cu标记的双功能螯合剂(bifunctional chelators,BFCs),这是一种很有前景的Aβ显像剂。Bandara等[18]的研究结果显示,64Cu-BFCs在体外与Aβ具有一定的亲和力,且其在AD转基因小鼠的脑切片中也能与Aβ特异性结合。Sun等[19]将疏水性淀粉样蛋白原纤维结合片段与亲水性氮杂大环化合物连接得到一种两亲性化合物LS-4,再用三氮杂环螯合64Cu得到64Cu-LS-4,研究结果显示,64Cu-LS-4很容易穿透血脑屏障并在体内与Aβ寡聚体结合,可显著减少淀粉样斑块和Tau蛋白的数量,同时也降低了小胶质细胞的活化能力,其在体内可进行淀粉样斑块显像,是一种很有潜力的新型分子探针。Nguyen等[20]研究发现,5-(5-[124I]碘代苯并呋喃-2-基)-N,N-二甲基吡啶-2-胺(简称124I-IBETA)可在小鼠模型和AD患者的脑组织中与Aβ斑块高度结合,是一种新型的Aβ斑块PET显像剂。

    3.   Tau蛋白特异性分子探针
    • 精神障碍是AD的一种特殊亚型,7-[6-(18F-氟)3-吡啶-3-基]-5H-吡啶并[4,3-b]吲哚(简称18F-AV1451、18F-Flortaucipir或18F-T807)PET显像显示,额叶、内侧颞叶和枕叶皮质中Tau蛋白水平升高可能与精神病以及认知功能衰退有关[21]。AD的组织病理学检查结果常被认为是DLB的并发症,而Mak等[22]18F-AV1451 PET显像显示,Tau蛋白可能与DLB中的神经炎症和其他过程具有协同作用。在一项针对11例AD患者的试验中发现,2-(4-(2-[18F]氟乙基)哌啶-1-基)苯并[4,5]咪唑并[1,2-a]嘧啶(简称18F-T808或18F-AV680)有望成为针对AD患者Tau蛋白显像的新型显像剂[23]。但是,在一项针对小鼠Tau蛋白显像的研究中发现,18F-AV680不能与小鼠的Tau蛋白特异性结合,这可能是由于不同物种之间的蛋白差异造成的[24]。Villemagne等[25]的研究结果显示,2-(4-氨基苯基)-6-(2-18F-氟)喹啉(简称18F-THK523)在AD患者的颞叶、顶叶、眶额叶和海马中高摄取,且在所有受试者的白质中呈高摄取状态。1-氟-3-[2-[4-(甲氨基)苯基]喹啉-6-基]氧丙-2-醇(简称18F-THK5117)的脑部显像也能区分健康受试者和AD患者,但其也存在白质非特异性摄取的情况。有研究结果显示,18F-6-[(3-氟-2-羟基)丙氧基]-2-(4-二甲氨基苯基)喹啉(简称18F-THK5105)在AD患者的颞叶、顶叶、后扣带回、额叶和内侧颞叶皮质中高摄取[26]18F-THK5105对Tau蛋白的亲和力远高于Aβ,相较于18F-THK523,其摄取和清除速度均较快,是一种良好的Tau蛋白显像剂。有研究者发现,18F-(S)-6-[(3-氟-2-羟基)丙氧基]-2-(4-甲基氨基苯基)喹啉(简称18F-THK5317)在评估AD患者认知能力方面表现良好,其能准确评估AD患者认知能力的变化[27]。Colato等[28]发现,18F-THK5317能很好的将前驱期AD患者与健康受试者区分开,但其评估脑萎缩的能力稍弱。1-氟-3-[2-[6-(甲基氨基)吡啶-3-基]喹啉-6-基]氧丙烷-2-醇(简称18F-THK-5351)在遗忘型MCI患者的外侧颞叶、内侧颞叶、顶叶、额叶、后扣带皮层和楔前叶中的摄取显著高于健康受试者,而在非遗忘型MCI和健康受试者之间无明显差异[29]。有研究结果显示,18F-THK5351在中央前回的摄取能很好地将皮质基底综合征(corticobasal syndrome,CBS)与进行性核上性麻痹(progressive supranuclear palsy,PSP)和AD区分开,而其在颞下回的摄取又可鉴别AD与CBS和PSP[30]。在对7例有轻度创伤性脑损伤(mild traumatic brain injury,mTBI)病史的军人、15例有mTBI病史的退役球员、24例AD患者和28名健康受试者的试验中发现,与健康受试者相比,2-(1-(6-[(2-[18F]氟乙基)(甲基)氨基]-2-萘基)亚乙基)丙二腈(简称18F-FDDNP)在军人的杏仁核、中脑、丘脑、脑桥、额部和前后部扣带回区域中高摄取,且除了杏仁核和纹状体外,18F-FDDNP在军人和球员中的摄取相同,这表明18F-FDDNP在各种高危人群的早期检测和治疗监测中具有潜在价值[31]。明确Tau蛋白在体内的分布有助于临床治疗AD,在对151例MCI和AD患者进行6-(18F)氟-3-吡咯并[2,3-c]吡啶-1-基-异喹啉-5-胺(简称18F-MK6240)PET显像后发现,其在体内可直观地显示Tau蛋白的分布,包括边缘模式和内侧颞叶保留模式等[32]。2-(6-[18F]氟-吡啶-3-基)-9H-二吡啶并[2,3-b;3',4'-d]吡咯(简称18F-RO948)在AD患者中的摄取较高,其可区分AD与无认知障碍的个体和非AD患者,且其对AD患者Tau蛋白有较高的特异度[33]。11-(2-(18F)氟烷基吡啶-4-基)-4,8,10-三氮杂三环[7.4.0.02,7]十三烷-1(9),2(7),3,5,10,12-己烯(简称18F-PI2620)是一种能与Tau蛋白高度结合、在脑部高摄取且能快速清除的新型显像剂[34]。Teng等[35]发现,18F标记的基因泰克Tau探针1(简称18F-GTP1)PET成像可用于识别有更快认知衰退风险的AD患者,其可能成为AD预后的生物标志物。Hsu等[36]的1-(18F)-[[2-[(1E,3E)-4-[6-(甲氨基)吡啶-3-基]丁二烯基-1,3-二烯基]-1,3-苯并噻唑-6-基]氧基]丙烷-2-醇(简称18F-APN1607或18F-PM-PBB3)PET显像显示,其能反应患者的认知能力变化,并能显示AD进展过程中淀粉样蛋白、Tau蛋白的空间分布模式。

      DLB以及帕金森病的神经病理学标志是α-突触核蛋白的积累,研究结果显示,Tau示踪剂2-[(1E,3E)-4-[6-((11C)甲基氨基)吡啶3-基]丁-1,3-二烯基]-1,3-苯并噻唑-6-醇(简称11C-PBB3)与α-突触核蛋白有一定程度的结合。对2例CBS患者、7例PSP患者和2例AD患者进行回顾性分析,发现CBS患者背外侧额叶和运动皮层与AD患者额叶和颞叶皮层的11C-PBB3摄取明显均高于PSP患者[37]

    4.   神经炎症类特异性分子探针
    • 小胶质细胞激活是AD的一个关键病理特征,转位蛋白的正电子显像是检测体内小胶质细胞激活的常用方法。研究结果显示,与AD对照组小鼠相比,使用药物治疗后的AD小鼠,其皮质和海马区对18F标记的氟三氯脲(简称18F-Flutriciclamide,18F-GE180)的摄取明显减少,18F-GE180在AD小鼠中识别激活的小胶质细胞比N-[18F]氟乙酰基-N-(2,5-二甲氧基苄基)-2-苯氧基苯胺(简称18F-PBR06)更敏感[38]。Rauchmann等[39]的研究结果显示,与Aβ阴性的健康对照组相比,AD患者双侧前内侧颞叶对18F-GE180的摄取增加,其高摄取与认知障碍、痴呆严重程度和疾病分期相关。Hu等[40]研究发现,18F-N,N-二乙基-2-(2-[4-(2-氟乙氧基)-苯基]-5,7-二甲基吡唑并[1,5-a]嘧啶-3-基)-乙酰胺(简称18F-DPA714)在监测小胶质细胞活化和神经炎症方面具有很大的潜力,有助于发现AD抗炎治疗的最佳时间点。转位蛋白和胱氨酸/谷氨酰胺反转运蛋白系统过表达可分别通过18F-DPA714与(4S)-4-(3-[18F]氟丙基)-L-谷氨酸盐(简称18F-FSPG)显像进行评估,这表明18F-DPA714与18F-FSPG均可作为评估AD进展的潜在显像剂[41]

      Malpetti等[42]研究发现,颞前神经炎可预测有症状的AD患者的认知能力下降。与PSP患者和对照组相比,AD患者内侧颞叶、枕叶、颞叶和顶叶皮层的N-[11C]甲基-N-(1-甲基丙基)-1-(2-氯苯基)异喹啉-3-氨甲酰(11C-PK11195)摄取水平升高;与对照组相比,PSP患者在丘脑和壳核中的11C-PK11195摄取水平升高;11C-PK11195在楔叶与楔前叶的摄取与AD的情景记忆障碍相关,而其在苍白球、中脑和桥脑的摄取与PSP的疾病严重程度相关[43]。Yokokura等[44]比较了11C-PK11195和11C-N,N-二乙基-2-[2-(4-甲氧基苯基)-5,7-二甲基吡唑并[1,5-a]嘧啶-3-基]-ac-乙酰胺(简称11C-DPA713)在不同大脑区域的结合电位(binding potential,BPND),以期阐明不同示踪剂揭示的衰老和痴呆过程中的微胶质激活程度,结果显示,11C-DPA713的BPND在所有脑区均呈类别依赖性升高,在AD组显著升高,而11C-PK11195的BPND在各组间的差异无统计学意义,认知记忆评分与许多脑区11C-DPA713的BPND水平显著相关,而11C-PK11195的BPND与认知记忆评分无相关性。

    5.   小结与展望
    • 目前,对于AD仍没有较好的治疗方法,仅停留在延缓AD的病情进展阶段,以最大限度提高患者的生存时间和生活质量。因此,AD的早期诊断就显得尤为重要,尽早发现AD并采取有效的干预措施,以延缓病情恶化,从而提高患者的生活质量。而核医学显像在AD的早期诊断以及分型等方面有着巨大优势,可以无创性地筛查AD,为临床提供强有力的帮助。针对AD患者的具体情况,目前可以采取不同分子探针对其进行诊断,必要时可采取多分子探针结合的方式明确AD分型,以便采取有针对性的治疗方式。同时,在治疗过程中也可使用不同显像剂,以评估治疗的效果和疾病发展的速度。但近年来对于AD发病机制的研究进展缓慢,也尚无治疗AD的特效药。未来应进一步研究出具有高特异性的新型分子探针,以尽早发现AD,从而为进一步的治疗争取宝贵的时间。

      利益冲突 所有作者声明无利益冲突

      作者贡献声明 贾路路负责命题的提出、综述的撰写;郭昆冈、唐红军负责综述的修改;付巍负责综述的最终审阅与修改

Reference (44)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return