[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394−424. DOI: 10.3322/caac.21492.
[2] Stapleton S, Jaffray D, Milosevic M. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery[J]. Adv Drug Deliv Rev, 2017, 109: 119−130. DOI: 10.1016/j.addr.2016.05.021.
[3] Wang H, Mu XY, He H, et al. Cancer Radiosensitizers[J]. Trends Pharmacol Sci, 2017, 39(1): 24−48. DOI: 10.1016/j.tips.2017.11.003.
[4] Yu CYY, Xu H, Ji SL, et al. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation[J/OL]. Adv Mater, 2017, 29(15)[2019-06-02]. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201606167. DOI: 10.1002/adma.201606167.
[5] Song GS, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J/OL]. Adv Mater, 2017, 29(32)[2019-06-02]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201700996. DOI: 10.1002/adma.201700996.
[6] Tomoda K, Chiang C, Kozak KR, et al. Examination of Gossypol-Pluronic Micelles as Potential Radiosensitizers[J/OL]. AAPS J, 2015, 17(6): 1369−1375[2019-06-02]. https://link.springer.com/article/10.1208/s12248−015−9809−6. DOI: 10.1208/s12248-015-9809-6.
[7] de Sousa Cavalcante L, Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer[J]. Eur J Pharmacol, 2014, 741: 8−16. DOI: 10.1016/j.ejphar.2014.07.041.
[8] Rezaee M, Hunting DJ, Sanche L. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4): 847−853. DOI: 10.1016/j.ijrobp.2013.06.2037.
[9] 章鹤, 宋建元, 曹建平. 肿瘤放射增敏药物的研究进展[J]. 国际放射医学核医学杂志, 2014, 38(6): 408−411. DOI: 10.3760/cma.j.issn.1673−4114.2014.06.014. Zhang H, Song JY, Cao JP. The research progression of cancer radio-sensitization drugs[J]. Int J Radiat Med Nucl Med, 2014, 38(6): 408−411. DOI: 10.3760/cma.j.issn.1673−4114.2014.06.014.
[10] Tano T, Okamoto M, Kan S, et al. Immunochemoradiotherapy for Patients with Oral Squamous Cell Carcinoma: Augmentation of OK-432-Induced Helper T Cell 1 Response by 5-FU and X-ray Irradiation[J]. Neoplasia, 2013, 15(7): 805−814. DOI: 10.1593/neo.13488.
[11] Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action[J]. Eur J Pharmacol, 2014, 740: 364−378. DOI: 10.1016/j.ejphar.2014.07.025.
[12] Chi DC, Brogan F, Turenne I, et al. Gemcitabine-Induced Pulmonary Toxicity[J]. Anticancer Res, 2012, 32(9): 4147−4149.
[13] Chan L, Gao P, Zhou W, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge switching ability for precise tumor radiosensitization[J]. ACS Nano, 2018, 12(12): 12401. DOI: 10.1007/s13246−012−0143−3.
[14] Yamaguchi H, Hayama K, Sasagawa I, et al. HER2-Targeted Multifunctional Silica Nanoparticles Specifically Enhance the Radiosensitivity of HER2-Overexpressing Breast Cancer Cells[J/OL]. Int J Mol Sci, 2018, 19(3): 908[2019-06-02]. https://www.mdpi.com/1422−0067/19/3/908. DOI: 10.3390/ijms19030908.
[15] Xu H, Wang TT, Yang CB, et al. Supramolecular nanofibers of curcumin for highly amplified radiosensitization of colorectal cancers to ionizing radiation[J/OL]. Adv Funct Mater, 2018, 28(14)[2019-06-02]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201707140. DOI: 10.1002/adfm.201707140.
[16] 常静林, 张玉民, 董辉. 金纳米粒子在肿瘤放疗中的研究进展[J]. 国际放射医学核医学杂志, 2018, 42(3): 261−264. DOI: 10.3760/cma.j.issn.1673−4114.2018.03.012. Chang JL, Zhang YM, Dong H. Advances in the application of gold nanoparticles in tumor radiotherapy[J]. Int J Radiat Med Nucl Med, 2018, 42(3): 261−264. DOI: 10.3760/cma.j.issn.1673−4114.2018.03.012.
[17] Zhang XD, Luo ZT, Chen J, et al. Ultrasmall Au<sub>10−12</sub>(SG)<sub>10−12</sub> Nanomolecules for High Tumor Specificity and Cancer Radiotherapy[J]. Adv Mater, 2014, 26(26): 4565−4568. DOI: 10.1002/adma.201400866.
[18] Zhou YW, Hu Y, Sun WJ, et al. Radiotherapy-Sensitized Tumor Photothermal Ablation Using γ-Polyglutamic Acid Nanogels Loaded with Polypyrrole[J]. Biomacromolecules, 2018, 19(6): 2034−2042. DOI: 10.1021/acs.biomac.8b00184.
[19] Huang PS, Zhang YM, Wang WW, et al. Co-delivery of doxorubicin and <sup>131</sup>I by thermosensitive micellar-hydrogel for enhanced <italic>in situ</italic> synergetic chemoradiotherapy[J]. J Control Release, 2015, 220: 456−464. DOI: 10.1016/j.jconrel.2015.11.007.
[20] Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes[J]. Eur J Pharm Biopharm, 2007, 65(3): 259−269. DOI: 10.1016/j.ejpb.2006.11.009.
[21] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance[J]. Adv Drug Deliv Rev, 2012, 64(S1): S37−48. DOI: 10.1016/j.addr.2012.09.013.
[22] Huang CY, Ju DT, Chang CF, et al. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer[J]. BioMedicine, 2017, 7(4): 12−23. DOI: 10.1051/bmdcn/2017070423.
[23] Xu WH, Han M, Dong Q, et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation[J]. Int J Nanomedicine, 2012, 7: 2661−2671. DOI: 10.2147/IJN.S30445.
[24] You H, Fu SZ, Qin XH, et al. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma[J]. Colloids Surf B Biointerfaces, 2016, 140: 150−160. DOI: 10.1016/j.colsurfb.2015.12.034.
[25] Shih YH, Peng CL, Chiang PF, et al. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma[J]. Int J Nanomedicine, 2015, 10: 7443−7454. DOI: 10.2147/IJN.S91008.
[26] Zhao KJ, Ke WD, Yin W, et al. Facile Preparation and Radiotherapy Application of an Amphiphilic Block Copolymer Radiosensitizer[J]. ACS Macro Lett, 2017, 6(5): 556−560. DOI: 10.1021/acsmacrolett.7b00196.
[27] Frank LA, Contri RV, Beck RCR, et al. Improving drug biological effects by encapsulation into polymeric nanocapsules[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2015, 7(5): 623−639. DOI: 10.1002/wnan.1334.
[28] Yang YS, Carney RP, Stellacci F, et al. Enhancing Radiotherapy by Lipid Nanocapsule-Mediated Delivery of Amphiphilic Gold Nanoparticles to Intracellular Membranes[J]. ACS Nano, 2014, 8(9): 8992−9002. DOI: 10.1021/nn502146r.
[29] Lin LT, Chang CH, Yu HL, et al. Evaluation of the Therapeutic and Diagnostic Effects of PEGylated Liposome-Embedded <sup>188</sup>Re on Human Non-Small Cell Lung Cancer Using an Orthotopic Small-Animal Model[J]. J Nucl Med, 2014, 55(11): 1864−1870. DOI: 10.2967/jnumed.114.140418.
[30] Jaffray D, Kupelian P, Djemil T, et al. Review of image-guided radiation therapy[J]. Expert Rev Anticancer Ther, 2007, 7(1): 89−103. DOI: 10.1586/14737140.7.1.89.
[31] Yao MH, Ma M, Chen Y, et al. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy[J]. Biomaterials, 2014, 35(28): 8197−8205. DOI: 10.1016/j.biomaterials.2014.06.010.
[32] Rocca JD, Werner ME, Kramer SA, et al. Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy[J]. Nanomedicine, 2015, 11(1): 31−38. DOI: 10.1016/j.nano.2014.07.004.
[33] Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review[J]. J Adv Res, 2015, 6(2): 105−121. DOI: 10.1016/j.jare.2013.07.006.
[34] Richter A, Paschew G, Klatt S, et al. Review on Hydrogel-Based pH Sensors and Microsensors[J/OL]. Sensors, 2008, 8(1): 561−581[2019-06-02]. https://www.mdpi.com/1424−8220/8/1/561. DOI: 10.3390/s8010561.
[35] Schaal JL, Li XH, Mastria E, et al. Injectable polypeptide micelles that form radiation crosslinked hydrogels <italic>in situ</italic> for intratumoral radiotherapy[J]. J Control Release, 2016, 228: 58−66. DOI: 10.1016/j.jconrel.2016.02.040.
[36] Li TT, Zhang MF, Wang JZ, et al. Thermosensitive Hydrogel Co-Loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy[J/OL]. AAPS J, 2015, 18(1): 146−155[2019-06-02]. https://link.springer.com/article/10.1208/s12248−015−9828−3. DOI: 10.1208/s12248-015-9828-3.
[37] Peng CL, Shih YH, Liang KS, et al. Development of <italic>in Situ</italic> Forming Thermosensitive Hydrogel for Radiotherapy Combined with Chemotherapy in a Mouse Model of Hepatocellular Carcinoma[J]. Mol Pharm, 2013, 10(5): 1854−1864. DOI: 10.1021/mp3006424.