[1] Ayabe Y, Hijii N, Takenaka C. Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident[J]. Environ Pollut, 2017, 228: 344−353. DOI: 10.1016/j.envpol.2017.05.041.
[2] Kim DS, Kim JB, Goh EJ, et al. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways[J]. J Plant Physiol, 2011, 168(16): 1960−1971. DOI: 10.1016/j.jplph.2011.05.008.
[3] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796−815. DOI: 10.1038/35048692.
[4] Binenbaum J, Weinstain R, Shani E. Gibberellin Localization and Transport in Plants[J]. Trends Plant Sci, 2018, 23(5): 410−421. DOI: 10.1016/j.tplants.2018.02.005.
[5] Qi WC, Zhang L, Feng WS, et al. ROS and ABA Signaling are Involved in the Growth Stimulation Induced by Low-Dose Gamma Irradiation in Arabidopsis Seedling[J]. Appl Biochem Biotechnol, 2015, 175(3): 1490−1506. DOI: 10.1007/s12010−014−1372−6.
[6] Moreno-Romero J, Armengot L, Mar Marquès-Bueno M, et al. CK2-defective Arabidopsis plants exhibit enhanced double-strand break repair rates and reduced survival after exposure to ionizing radiation[J]. Plant J, 2012, 71(4): 627−638. DOI: 10.1111/j.1365−313X.2012.05019.x.
[7] Song J, Keppler BD, Wise RR, et al. PARP2 is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA damage and immune responses[J]. PLoS Genet, 2015, 11(5): e1005200. DOI: 10.1371/journal.pgen.1005200.
[8] Tenhaken R, Doerks T, Bork P. DCD - a novel plant specific domain in proteins involved in development and programmed cell death[J/OL]. BMC Bioinformatics, 2005, 6: 169[2019-03-13]. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-169. DOI: 10.1186/1471-2105-6-169.
[9] Ludwig AA, Tenhaken R. A New Cell Wall Located N-rich Protein is Strongly Induced During the Hypersensitive Response in Glycine Max L.[J]. Eur J Plant Pathol, 2001, 107(3): 323−336. DOI: 10.1023/a:1011202225323.
[10] Reis PAB, Carpinetti PA, Freitas PPJ, et al. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants[J/OL]. BMC Plant Biol, 2016, 16: 156[2019-03-13]. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0843-z. DOI: 10.1186/s12870-016-0843-z.
[11] Bai Y, Kissoudis C, Yan Z, et al. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress[J]. Plant J, 2018, 93(4): 781−793. DOI: 10.1111/tpj.13800.
[12] Irsigler AS, Costa MD, Zhang P, et al. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways[J/OL]. BMC Genomics, 2007, 8: 431[2019-03-13]. https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-8-431. DOI: 10.1186/1471-2164-8-431.
[13] Costa MDL, Reis PAB, Valente MAS, et al. A New Branch Of Endoplasmic Reticulum Stress Signaling and the Osmotic Signal Converge on Plant-Specific Asparagine-Rich Proteins to Promote Cell Death[J]. J Biol Chem, 2008, 283(29): 20209−20219. DOI: 10.1074/jbc.M802654200.
[14] Ludwig A, Tenhaken R. Suppression of the ribosomal L2 gene reveals a novel mechanism for stress adaptation in soybean[J]. Planta, 2001, 212(5/6): 792−798. DOI: 10.1007/s004250000427.
[15] Liang YB, Cui SC, Tang XL, et al. An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana[J/OL]. Front Plant Sci, 2018, 9: 303[2019-03-13]. https://www.frontiersin.org/articles/10.3389/fpls.2018.00303/full. DOI: 10.3389/fpls.2018.00303.
[16] Hoepflinger M C, Pieslinger A M, Tenhaken R. Investigations on N-rich protein (NRP) of Arabidopsis thaliana under different stress conditions[J]. Plant Physiol Biochem, 2011, 49(3): 293−302. DOI: 10.1016/j.plaphy.2011.01.005.
[17] Vishwakarma K, Upadhyay N, Kumar N, et al. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects[J/OL]. Front Plant Sci, 2017, 8: 161[2019-03-13]. https://www.frontiersin.org/articles/10.3389/fpls.2017.00161/full. DOI: 10.3389/fpls.2017.00161.
[18] Zhu T, Wu YY, Yang XD, et al. The Asparagine-Rich Protein NRP Facilitates the Degradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis[J]. Mol Plant, 2018, 11(2): 257−268. DOI: 10.1016/j.molp.2017.11.006.
[19] Hauser F, Li ZX, Waadt R, et al. SnapShot: Abscisic Acid Signaling[J]. Cell, 2017, 171(7): 1708−1708. DOI: 10.1016/j.cell.2017.11.045.
[20] Humplik JF, Bergougnoux V, van Volkenburgh E. To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid[J]. Trends Plant Sci, 2017, 22(10): 830−841. DOI: 10.1016/j.tplants.2017.07.009.
[21] Bauer H, Ache P, Lautner S, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis[J]. Curr Biol, 2013, 23(1): 53−57. DOI: 10.1016/j.cub.2012.11.022.
[22] Endo A, Sawada Y, Takahashi H, et al. Drought Induction of Arabidopsis 9-Cis-Epoxycarotenoid Dioxygenase Occurs in Vascular Parenchyma Cells[J]. Plant Physiol, 2008, 147(4): 1984−1993. DOI: 10.1104/pp.108.116632.
[23] Zhou RM, Zhu T, Han L, et al. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2[J]. J Exp Bot, 2017, 68(13): 3427−3440. DOI: 10.1093/jxb/erx192.
[24] Dai MQ, Xue Q, Mccray T, et al. The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis[J]. Plant Cell, 2013, 25(2): 517−534. DOI: 10.1105/tpc.112.105767.
[25] Jubin T, Kadam A, Jariwala M, et al. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival[J]. Cell Prolif, 2016, 49(4): 421−437. DOI: 10.1111/cpr.12268.
[26] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909−930. DOI: 10.1016/j.plaphy.2010.08.016.