[1] Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. Eur Heart J, 2018, 39(7): 508−579. DOI: 10.1093/eurheartj/ehx628.
[2] Vaughan AS, Schieb L, Casper M. Historic and recent trends in county-level coronary heart disease death rates by race, gender, and age group, United States, 1979-2017[J/OL]. PLoS One, 2020, 15(7): e0235839[2021-07-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235839. DOI: 10.1371/journal.pone.0235839.
[3] Sobhani K, Nieves Castro DK, Fu Q, et al. Sex differences in ischemic heart disease and heart failure biomarkers[J]. Biol Sex Differ, 2018, 9(1): 43. DOI: 10.1186/s13293-018-0201-y.
[4] Picard F, Sayah N, Spagnoli V, et al. Vasospastic angina: A literature review of current evidence[J]. Arch Cardiovasc Dis, 2019, 112(1): 44−55. DOI: 10.1016/j.acvd.2018.08.002.
[5] Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group[J]. Eur Heart J, 2020, 41(37): 3504−3520. DOI: 10.1093/eurheartj/ehaa503.
[6] Vancheri F, Longo G, Vancheri S, et al. Coronary microvascular dysfunction[J]. J Clin Med, 2020, 9(9): 2880. DOI: 10.3390/jcm9092880.
[7] Wang TKM, Grey C, Jiang Y, et al. Nationwide trends in acute coronary syndrome by subtype in New Zealand 2006-2016[J]. Heart, 2020, 106(3): 221−227. DOI: 10.1136/heartjnl-2019-315655.
[8] Naderi S. Microvascular coronary dysfunction-an overview[J]. Curr atheroscler rep, 2018, 20(2): 7. DOI: 10.1007/s11883-018-0710-5.
[9] Groepenhoff F, Eikendal ALM, Rittersma ZHS, et al. Persistent symptoms and health needs of women and men with non-obstructed coronary arteries in the years following coronary angiography[J/OL]. Frontiers Cardiovascular Medicine, 2021, 8: 670843[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126611. DOI: 10.3389/fcvm.2021.670843.
[10] Burger IA, Lohmann C, Messerli M, et al. Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging[J/OL]. PLoS One, 2018, 13(8): e0202302[2021-07-19]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0202302. DOI: 10.1371/journal.pone.0202302.
[11] Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation[J]. J Nucl Cardiol, 2018, 25(5): 1784−1846. DOI: 10.1007/s12350-018-1283-y.
[12] Pelletier-Galarneau M, Dilsizian V. Microvascular angina diagnosed by absolute PET myocardial blood flow quantification[J]. Curr Cardiol Rep, 2020, 22(2): 9. DOI: 10.1007/s11886-020-1261-2.
[13] Sud M, Han L, Koh M, et al. Association Between Adherence to fractional flow reserve treatment thresholds and major adverse cardiac events in patients with coronary artery disease[J]. JAMA, 2020, 324(23): 2406−2414. DOI: 10.1001/jama.2020.22708.
[14] Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes[J]. Circulation, 2014, 129(24): 2518−2527. DOI: 10.1161/circula-tionaha.113.008507.
[15] Boyd B, Solh T. Takotsubo cardiomyopathy: review of broken heart syndrome[J]. JAAPA, 2020, 33(3): 24−29. DOI: 10.1097/01.JAA.0000654368.35241.fc.
[16] Hage FG, Heo J, Franks B, et al. Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus[J]. Am Heart J, 2009, 157(4): 771−776. DOI: 10.1016/j.ahj.2009.01.011.
[17] Gebhard CE, Marędziak M, Portmann A, et al. Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2032−2041. DOI: 10.1007/s00259-019-04344-1.
[18] Glaab T, Schmidt O, Fritsch J. Guidance to the interpretation of cardiopulmonary exercise testing[J]. Pneumologie, 2020, 74(2): 88−102. DOI: 10.1055/a-1069-0611.
[19] Ho S, Qi D, Tan GP. Exercise intolerance due to chronotropic incompetence uncovered by cardiopulmonary exercise test: an often overlooked manifestation of ischaemic heart disease[J/OL]. Respirology Case Reports, 2021, 9(8): e00807[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239985. DOI: 10.1002/rcr2.807.
[20] Mann A, Williams J. Considerations for stress testing performed in conjunction with myocardial perfusion imaging[J]. J Nucl Med Technol, 2020, 48(2): 114−121. DOI: 10.2967/jnmt.120.245308.
[21] Lewis TC, Aberle C, Altshuler D, et al. Comparative effectiveness and safety between milrinone or dobutamine as initial inotrope therapy in cardiogenic shock[J]. J Cardiovasc Pharmacol Ther, 2019, 24(2): 130−138. DOI: 10.1177/1074248418797357.
[22] Pouwels S, Van Genderen ME, Kreeftenberg HG, et al. Utility of the cold pressor test to predict future cardiovascular events[J]. Expert Rev Cardiovasc Ther, 2019, 17(4): 305−318. DOI: 10.1080/14779072.2019.1598262.
[23] Juneau D, Wu KY, Kaps N, et al. Internal validation of myocardial flow reserve PET imaging using stress/rest myocardial activity ratios with Rb-82 and N-13-ammonia[J]. J Nucl Cardiol, 2021, 28(3): 835−850. DOI: 10.1007/s12350-020-02464-y.
[24] Tomiyama T, Kumita S, Ishihara K, et al. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies[J]. Int J Cardiovasc Imaging, 2015, 31(5): 1089−1095. DOI: 10.1007/s10554-015-0654-6.
[25] Slomka PJ, Alexanderson E, Jácome R, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT[J]. J Nucl Med, 2012, 53(2): 171−181. DOI: 10.2967/jnumed.111.095398.
[26] Sdringola S, Johnson NP, Kirkeeide RL, et al. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers[J]. JACC Cardiovasc Imaging, 2011, 4(4): 402−412. DOI: 10.1016/j.jcmg.2011.02.008.
[27] Gebhard C, Messerli M, Lohmann C, et al. Sex and age differences in the association of heart rate responses to adenosine and myocardial ischemia in patients undergoing myocardial perfusion imaging[J]. J Nucl Cardiol, 2020, 27(1): 159−170. DOI: 10.1007/s12350-018-1276-x.
[28] Aljaroudi W, Anokwute C, Fughhi I, et al. The prognostic value of heart rate response during vasodilator stress myocardial perfusion imaging in patients with end-stage renal disease undergoing renal transplantation[J]. J Nucl Cardiol, 2019, 26(3): 814−822. DOI: 10.1007/s12350-017-1061-2.
[29] Corban MT, Prasad A, Gulati R, et al. Sex-specific differences in coronary blood flow and flow velocity reserve in symptomatic patients with non-obstructive disease[J]. EuroIntervention, 2021, 16(13): 1079−1084. DOI: 10.4244/eij-d-19-00520.
[30] Haider A, Bengs S, Maredziak M, et al. Heart rate reserve during pharmacological stress is a significant negative predictor of impaired coronary flow reserve in women[J]. Eur J Nucl Med Mol Imaging, 2019, 46(6): 1257−1267. DOI: 10.1007/s00259-019-4265-7.
[31] Maredziak M, Bengs S, Portmann A, et al. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF)[J]. Eur J Nucl Med Mol Imaging, 2020, 47(13): 3094−3106. DOI: 10.1007/s00259-020-04892-x.
[32] Mathur S, Shah AR, Ahlberg AW, et al. Blunted heart rate response as a predictor of cardiac death in patients undergoing vasodilator stress technetium-99m sestamibi gated SPECT myocardial perfusion imaging[J]. J Nucl Cardiol, 2010, 17(4): 617−624. DOI: 10.1007/s12350-010-9242-2.
[33] Venkataraman R, Hage FG, Dorfman TA, et al. Relation between heart rate response to adenosine and mortality in patients with end-stage renal disease[J]. Am J Cardiol, 2009, 103(8): 1159−1164. DOI: 10.1016/j.amjcard.2009.01.007.
[34] Lesnewich LM, Conway FN, Buckman JF, et al. Associations of depression severity with heart rate and heart rate variability in young adults across normative and clinical populations[J]. Int J Psychophysiol, 2019, 142: 57−65. DOI: 10.1016/j.ijpsycho.2019.06.005.
[35] Gorur GD, Ciftci EA, Kozdag G, et al. Reduced heart rate response to dipyridamole in patients undergoing myocardial perfusion SPECT[J]. Ann Nucl Med, 2012, 26(8): 609−615. DOI: 10.1007/s12149-012-0618-z.
[36] de Souza Leão Lima R, Machado L, Azevedo AB, et al. Predictors of abnormal heart rate response to dipyridamole in patients undergoing myocardial perfusion SPECT[J]. Ann Nucl Med, 2011, 25(1): 7−11. DOI: 10.1007/s12149-010-0420-8.
[37] Cruickshank JM. Coronary flow reserve and the J curve relation between diastolic blood pressure and myocardial infarction[J]. BMJ, 1988, 297(6658): 1227−1230. DOI: 10.1136/bmj.297.6658.1227.
[38] Caliskan M, Caliskan Z, Gullu H, et al. Increased morning blood pressure surge and coronary microvascular dysfunction in patient with early stage hypertension[J]. J Am Soc Hypertens, 2014, 8(9): 652−659. DOI: 10.1016/j.jash.2014.05.010.
[39] Lembo M, Sicari R, Esposito R, et al. Association between elevated pulse pressure and high resting coronary blood flow velocity in patients with angiographically normal epicardial coronary arteries [J/OL]. J Am Heart Assoc, 2017, 6(7): e005710[2021-07-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586295. DOI: 10.1161/jaha.117.005710.