[1] El-Galaly TC, Villa D, Gormsen LC, et al. FDG-PET/CT in the management of lymphomas: current status and future directions[J]. J Intern Med, 2018, 284(4): 358−376. DOI: 10.1111/joim.12813.
[2] Ricard F, Cheson B, Barrington S, et al. Application of the Lugano classification for initial evaluation, staging, and response assessment of Hodgkin and Non-Hodgkin lymphoma: the PRoLoG consensus initiative (Part 1-Clinical)[J]. J Nucl Med, 2023, 64(1): 102−108. DOI: 10.2967/jnumed.122.264106.
[3] 中华医学会核医学分会. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)[J]. 中华核医学与分子影像杂志, 2021, 41(3): 161−169. DOI: 10.3760/cma.j.cn321828-20210129-00018. Chinese Society of Nuclear Medicine. Clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2021, 41(3): 161−169. DOI: 10.3760/cma.j.cn321828-20210129-00018.
[4] 卫毛毛, 刘卫平, 袁婷婷, 等. 18F-FDG PET/CT早期诊断淋巴瘤治疗相关心脏毒性的应用[J]. 中华核医学与分子影像杂志, 2021, 41(11): 653−659. DOI: 10.3760/cma.j.cn321828-20200722-00291. Wei MM, Liu WP, Yuan TT, et al. Application of 18F-FDG PET/CT in early detection of therapy-associated cardiotoxicity in patients with lymphoma[J]. Chin J Nucl Med Mol Imaging, 2021, 41(11): 653−659. DOI: 10.3760/cma.j.cn321828-20200722- 00291.
[5] Gallamini A, Kurlapski M, Zaucha JM. FDG-PET/CT for the management of post-chemotherapy residual mass in Hodgkin lymphoma[J/OL]. Cancers (Basel), 2021, 13(16): 3952[2023-08-28]. https://www.mdpi.com/2072-6694/13/16/3952. DOI: 10.3390/cancers13163952.
[6] 乔文礼, 赵晋华. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)解读与展望[J]. 中华核医学与分子影像杂志, 2022, 42(4): 193−195. DOI: 10.3760/cma.j.cn321828-20220314-00070. Qiao WL, Zhao JH. Interpretation and prospect of clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2022, 42(4): 193−195. DOI: 10.3760/cma.j.cn321828-20220314-00070.
[7] Alderuccio JP, Kuker RA, Yang F, et al. Quantitative PET-based biomarkers in lymphoma: getting ready for primetime[J]. Nat Rev Clin Oncol, 2023, 20(9): 640−657. DOI: 10.1038/s41571-023-00799-2.
[8] 乔文礼, 牛家华, 金文雅, 等. 自体干细胞移植前或后18F-FDG PET/CT显像及相关因素对经典霍奇金淋巴瘤预后的评估价值[J]. 中华核医学与分子影像杂志, 2020, 40(3): 147−152. DOI: 10.3760/cma.j.cn321828-20190729-00149. Qiao WL, Niu JH, Jin WY, et al. Prognostic value of 18F-FDG PET/CT imaging and related factors for patients with classic Hodgkin lymphoma before or after autologous stem cell transplantation[J]. Chin J Nucl Med Mol Imaging, 2020, 40(3): 147−152. DOI: 10.3760/cma.j.cn321828-20190729-00149.
[9] Nikaki A, Papadopoulos V, Valotassiou V, et al. Evaluation of the performance of 18F-fluorothymidine positron emission tomography/computed tomography (18F-FLT-PET/CT) in metastatic brain lesions[J/OL]. Diagnostics (Basel), 2019, 9(1): 17[2023-08-28]. https://www.mdpi.com/2075-4418/9/1/17. DOI: 10.3390/diagnostics9010017.
[10] Wang RM, Zhu HY, Chen YM, et al. Standardized uptake value based evaluation of lymphoma by FDG and FLT PET/CT[J]. Hematol Oncol, 2014, 32(3): 126−132. DOI: 10.1002/hon.2093.
[11] Sachpekidis C, Goldschmidt H, Kopka K, et al. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging[J/OL]. EJNMMI Res, 2018, 8(1): 28[2023-08-28]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-018-0383-7. DOI: 10.1186/s13550-018-0383-7.
[12] Zanoni L, Broccoli A, Lambertini A, et al. Role of 18F-FLT PET/CT in suspected recurrent or residual lymphoma: final results of a pilot prospective trial[J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1661−1671. DOI: 10.1007/s00259-019-04323-6.
[13] He Q, Zhang LQ, Zhang B, et al. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma[J/OL]. BMC Cancer, 2019, 19(1): 332[2023-08-28]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5560-1. DOI: 10.1186/s12885-019-5560-1.
[14] Ahn SY, Kwon SY, Jung SH, et al. Prognostic significance of interim 11C-methionine PET/CT in primary central nervous system lymphoma[J]. Clin Nucl Med, 2018, 43(8): e259−e264. DOI: 10.1097/RLU.0000000000002154.
[15] Tsuchiya J, Yamamoto M, Bae H, et al. Tumor identification of less aggressive or indolent lymphoma with whole-body 11C-acetate PET/CT[J]. Clin Nucl Med, 2019, 44(4): 276−281. DOI: 10.1097/RLU.0000000000002464.
[16] Rieger K, De Filippi R, Lindén O, et al. 90-yttrium-ibritumomab Tiuxetan as first-line treatment for follicular lymphoma: updated efficacy and safety results at an extended median follow-up of 96 years[J]. Ann Hematol, 2022, 101(4): 781−788. DOI: 10.1007/s00277-022-04781-3.
[17] Lugtenburg PJ, Zijlstra JM, Doorduijn JK, et al. Rituximab-PECC induction followed by 90Y-ibritumomab tiuxetan consolidation in relapsed or refractory DLBCL patients who are ineligible for or have failed ASCT: results from a phase Ⅱ HOVON study[J]. Br J Haematol, 2019, 187(3): 347−355. DOI: 10.1111/bjh.16087.
[18] Rylova SN, Del Pozzo L, Klingeberg C, et al. Immuno-PET imaging of CD30-positive lymphoma using 89Zr-desferrioxamine-labeled CD30-specific AC-10 antibody[J]. J Nucl Med, 2016, 57(1): 96−102. DOI: 10.2967/jnumed.115.162735.
[19] Altunay B, Morgenroth A, Beheshti M, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1371−1389. DOI: 10.1007/s00259-020-05094-1.
[20] Buck AK, Serfling SE, Lindner T, et al. CXCR4-targeted theranostics in oncology[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4133−4144. DOI: 10.1007/s00259-022-05849-y.
[21] Albano D, Dondi F, Bertagna F, et al. The role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in lymphoma: a systematic review[J/OL]. Cancers (Basel), 2022, 14(15): 3814[2023-08-28]. https://www.mdpi.com/2072-6694/14/15/3814. DOI: 10.3390/cancers14153814.
[22] Duell J, Krummenast F, Schirbel A, et al. Improved primary staging of marginal-zone lymphoma by addition of CXCR4-directed PET/CT[J]. J Nucl Med, 2021, 62(10): 1415−1421. DOI: 10.2967/jnumed.120.257279.
[23] Luo YP, Cao XX, Pan QQ, et al. 68Ga-pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenström Macroglobulinemia/Lymphoplasmacytic lymphoma: comparison to 18F-FDG PET/CT[J]. J Nucl Med, 2019, 60(12): 1724−1729. DOI: 10.2967/jnumed.119.226134.
[24] Chen ZY, Yang AP, Zhang JY, et al. CXCR4-directed PET/CT with [68Ga]Pentixafor in central nervous system lymphoma: a comparison with [18F]FDG PET/CT[J]. Mol Imaging Biol, 2022, 24(3): 416−424. DOI: 10.1007/s11307-021-01664-3.
[25] Volpe A, Nagle VL, Lewis JS, et al. Predicting CAR-T cell Immunotherapy success through ImmunoPET[J]. Clin Cancer Res, 2021, 27(4): 911−912. DOI: 10.1158/1078-0432.CCR-20-4297.
[26] Simonetta F, Alam IS, Lohmeyer JK, et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET[J]. Clin Cancer Res, 2021, 27(4): 1058−1068. DOI: 10.1158/1078-0432.CCR-20-2770.
[27] 汪静. FAPI有望开创核素靶向诊疗的新时代[J]. 中华核医学与分子影像杂志, 2021, 41(12): 705−708. DOI: 10.3760/cma.j.cn321828-20211102-00380. Wang J. FAPI will lead to a new era for radionuclide theranostics[J]. Chin J Nucl Med Mol Imaging, 2021, 41(12): 705−708. DOI: 10.3760/cma.j.cn321828-20211102-00380.
[28] Dendl K, Koerber SA, Kratochwil C, et al. FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis?[J/OL]. Cancers (Basel), 2021, 13(19): 4946[2023-08-28]. https://www.mdpi.com/2072-6694/13/19/4946. DOI: 10.3390/cancers13194946.
[29] Lan LJ, Liu HX, Wang YW, et al. The potential utility of [68Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent—comparison with [18F]FDG[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 963−979. DOI: 10.1007/s00259-021-05522-w.
[30] Jin X, Wei MM, Wang SL, et al. Detecting fibroblast activation proteins in lymphoma using 68Ga-FAPI PET/CT[J]. J Nucl Med, 2022, 63(2): 212−217. DOI: 10.2967/jnumed.121.262134.
[31] Chen XT, Wang SL, Lai YM, et al. Fibroblast activation protein and glycolysis in lymphoma diagnosis: comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT[J]. J Nucl Med, 2023, 64(9): 1399−1405. DOI: 10.2967/jnumed.123.265530.
[32] Gagliardi M, Ashizawa AT. Making sense of antisense oligonucleotide therapeutics targeting Bcl-2[J/OL]. Pharmaceutics, 2022, 14(1): 97[2023-08-28]. https://www.mdpi.com/1999-4923/14/1/97. DOI: 10.3390/pharmaceutics14010097.
[33] Liu DF, Xia Q, Ding D, et al. Radiolabeling of functional oligonucleotides for molecular imaging[J/OL]. Front Bioeng Biotechnol, 2022, 10: 986412[2023-08-28]. https://www.frontiersin.org/articles/10.3389/fbioe.2022.986412/full. DOI: 10.3389/fbioe.2022.986412.
[34] McKay MJ, Taubman KL, Foroudi F, et al. Molecular imaging using PET/CT for radiation therapy planning for adult cancers: current status and expanding applications[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 783−791. DOI: 10.1016/j.ijrobp.2018.03.013.
[35] Yang Q, Luo YP, Zhang Y, et al. Baseline [18F]FDG PET/CT may predict the outcome of newly diagnosed follicular lymphoma in patients managed with initial "watch-and-wait" approach[J]. Eur Radiol, 2022, 32(8): 5568−5576. DOI: 10.1007/s00330-022-08624-7.
[36] Pan QQ, Cao XX, Luo YP, et al. Chemokine receptor 4-targeted 68Ga-pentixafor PET/CT in response assessment of Waldenström Macroglobulinemia/Lymphoplasmacytic lymphoma: comparison to 18F-FDG PET/CT[J]. Clin Nucl Med, 2021, 46(9): 732−737. DOI: 10.1097/RLU.0000000000003760.
[37] Mayerhoefer ME, Raderer M, Lamm W, et al. CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: comparison with [18F]FDG-PET[J/OL]. Theranostics, 2021, 11(2): 567−578[2023-08-28]. https://www.thno.org/v11p0567.htm. DOI: 10.7150/thno.48620.
[38] Sharda E, Patel RS, Juárez-Salcedo LM, et al. Adverse events of radioimmunotherapy for non-Hodgkin lymphoma: a systematic review and meta-analysis[J]. Leuk Res, 2021, 108: 106615. DOI: 10.1016/j.leukres.2021.106615.