[1] Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis[J]. Lancet, 2016, 388(10055): 2023−2038. DOI: 10.1016/S0140-6736(16)30173-8.
[2] Arnett FC, Edworthy SM, Bloch DA, et al. The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31(3): 315−324. DOI: 10.1002/art.1780310302.
[3] Park HS, Hwang SC, Nahm DH, et al. Immunohistochemical characterization of the cellular infiltrate in airway mucosa of toluene diisocyanate (TDI)-induced asthma: comparison with allergic asthma[J]. J Korean Med Sci, 1998, 13(1): 21−26. DOI: 10.3346/jkms.1998.13.1.21.
[4] Loricera J, Blanco R, Hernández JL, et al. Use of positron emission tomography (PET) for the diagnosis of large-vessel vasculitis[J]. Rev Esp Med Nucl Imagen Mol, 2015, 34(6): 372−377. DOI: 10.1016/j.remn.2015.07.002.
[5] Nguyen AD, Crowhurst T, Lester S, et al. The utility of fluorine-18-fluorodeoxyglucose positron emission tomography in the diagnosis and monitoring of large vessel vasculitis: a South Australian retrospective audit[J]. Int J Rheum Dis, 2019, 22(8): 1378−1382. DOI: 10.1111/1756-185X.13617.
[6] Amigues I, Tugcu A, Russo C, et al. Myocardial inflammation, measured using 18-fluorodeoxyglucose positron emission tomography with computed tomography, is associated with disease activity in rheumatoid arthritis[J]. Arthritis Rheumatol, 2019, 71(4): 496−506. DOI: 10.1002/art.40771.
[7] Palmer WE, Rosenthal DI, Schoenberg OI, et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose[J]. Radiology, 1995, 196(3): 647−655. DOI: 10.1148/radiology.196.3.7644624.
[8] Polisson RP, Schoenberg OI, Fischman A, et al. Use of magnetic resonance imaging and positron emission tomography in the assessment of synovial volume and glucose metabolism in patients with rheumatoid arthritis[J]. Arthritis Rheum, 1995, 38(6): 819−825. DOI: 10.1002/art.1780380616.
[9] Fosse P, Kaiser MJ, Namur G, et al. 18F-FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab[J/OL]. Eur J Hybrid Imaging, 2018, 2(1): 6[2021-04-20]. https://ejhi.springeropen.com/articles/10.1186/s41824-017-0022-y. DOI: 10.1186/s41824-017-0022-y.
[10] Hess S, Scholtens AM, Gormsen LC. Patient preparation and patient-related challenges with FDG-PET/CT in infectious and inflammatory disease[J]. PET Clin, 2020, 15(2): 125−134. DOI: 10.1016/j.cpet.2019.11.001.
[11] Seki M, Kawai Y, Ishii C, et al. Functional analysis of choline transporters in rheumatoid arthritis synovial fibroblasts[J]. Mod Rheumatol, 2017, 27(6): 995−1003. DOI: 10.1080/14397595.2017.1280118.
[12] Roivainen A, Parkkola R, Yli-Kerttula T, et al. Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium[J]. Arthritis Rheum, 2003, 48(11): 3077−3084. DOI: 10.1002/art.11282.
[13] Been LB, Suurmeijer AJH, Cobben DCP, et al. [18F]FLT-PET in oncology: current status and opportunities[J]. Eur J Nucl Med Mol Imaging, 2004, 31(12): 1659−1672. DOI: 10.1007/s00259-004-1687-6.
[14] Christensen TN, Langer SW, Persson G, et al. 18F-FLT PET/CT adds value to 18F-FDG PET/CT for diagnosing relapse after definitive radiotherapy in patients with lung cancer: results of a prospective clinical trial[J]. J Nucl Med, 2021, 62(5): 628−635. DOI: 10.2967/jnumed.120.247742.
[15] Fuchs K, Kohlhofer U, Quintanilla-Martinez L, et al. In vivo imaging of cell proliferation enables the detection of the extent of experimental rheumatoid arthritis by 3'-deoxy-3'-18F-fluorothymidine and small-animal PET[J]. J Nucl Med, 2013, 54(1): 151−158. DOI: 10.2967/jnumed.112.106740.
[16] Yang XZ, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: focus on polarization, metabolism and apoptosis[J]. Cell Prolif, 2020, 53(7): e12854. DOI: 10.1111/cpr.12854.
[17] Narayan N, Mandhair H, Smyth E, et al. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages[J/OL]. PLoS One, 2017, 12(10): e0185767[2021-04-20]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185767. DOI: 10.1371/journal.pone.0185767.
[18] Van der Laken CJ, Elzinga EH, Kropholler MA. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography[J]. Arthritis Rheum, 2008, 58(11): 3350−3355. DOI: 10.1002/art.23955.
[19] Kropholler MA, Boellaard R, Elzinga EH, et al. Quantification of (R)-[11C]PK11195 binding in rheumatoid arthritis[J]. Eur J Nucl Med Mol Imaging, 2009, 36(4): 624−631. DOI: 10.1007/s00259-008-0987-7.
[20] Suridjan I, Pollock BG, Verhoeff NPLG, et al. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer's disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA[J]. Mol Psychiatry, 2015, 20(12): 1579−1587. DOI: 10.1038/mp.2015.1.
[21] Gent YYJ, Weijers K, Molthoff CFM, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis[J]. Arthritis Res Ther, 2014, 16(2): R70. DOI: 10.1186/ar4509.
[22] Chung SJ, Youn H, Jeong EJ, et al. In vivo imaging of activated macrophages by 18F-FEDAC, a TSPO targeting PET ligand, in the use of biologic disease-modifying anti-rheumatic drugs (bDMARDs)[J]. Biochem Biophys Res Commun, 2018, 506(1): 216−222. DOI: 10.1016/j.bbrc.2018.10.083.
[23] Tang DW, Nickels ML, Tantawy MN, et al. Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-diethyl-2-(4-(2-[18F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([18F]VUIIS1008) in Glioma[J]. Mol Imaging Biol, 2014, 16(6): 813−820. DOI: 10.1007/s11307-014-0743-2.
[24] Tang DW, Li J, Nickels ML, et al. Preclinical evaluation of a novel TSPO PET ligand 2-(7-butyl-2-(4-(2-[18F]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (18F-VUIIS1018A) to image glioma[J]. Mol Imaging Biol, 2019, 21(1): 113−121. DOI: 10.1007/s11307-018-1198-7.
[25] Werry EL, Bright FM, Piguet O. Recent developments in TSPO pet imaging as A biomarker of neuroinflammation in neurodegenerative disorders[J/OL]. Int J Mol Sci, 2019, 20(13): 3161[2021-04-20]. https://www.mdpi.com/1422-0067/20/13/3161. DOI: 10.3390/ijms20133161.
[26] Chaney A, Cropper HC, Johnson EM, et al. 11C-DPA-713 versus 18F-GE-180: a preclinical comparison of translocator protein 18 kDa PET tracers to visualize acute and chronic neuroinflammation in a mouse model of ischemic stroke[J]. J Nucl Med, 2019, 60(1): 122−128. DOI: 10.2967/jnumed.118.209155.
[27] Norris-Grey C, Cambridge G, Moore S, et al. Long-term persistence of rituximab in patients with rheumatoid arthritis: an evaluation of the UCL cohort from 1998 to 2020[J]. Rheumatology (Oxford), 2022, 61(2): 591−596. DOI: 10.1093/rheumatology/keab248.
[28] Tran L, Huitema ADR, van Rijswijk MH, et al. CD20 antigen imaging with 124I-rituximab PET/CT in patients with rheumatoid arthritis[J]. Hum Antibodies, 2011, 20(1/2): 29−35. DOI: 10.3233/HAB20110239.
[29] Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis[J]. Autoimmun Rev, 2017, 16(6): 594−601. DOI: 10.1016/j.autrev.2017.04.005.
[30] Eo JS, Jeong JM. Angiogenesis imaging using 68Ga-RGD PET/CT: therapeutic implications[J]. Semin Nucl Med, 2016, 46(5): 419−427. DOI: 10.1053/j.semnuclmed.2016.04.001.
[31] Zhu ZH, Yin YF, Zheng K, et al. Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT: a prospective proof-of-concept cohort study[J]. Ann Rheum Dis, 2014, 73(6): 1269−1272. DOI: 10.1136/annrheumdis-2013-204820.
[32] Li L, Ma L, Shang DP, et al. Pretreatment PET/CT imaging of angiogenesis based on 18F-RGD tracer uptake may predict antiangiogenic response[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 940−947. DOI: 10.1007/s00259-018-4143-8.
[33] Käkelä M, Luoto P, Viljanen T, et al. Adventures in radiosynthesis of clinical grade [68Ga]Ga-DOTA-Siglec-9[J/OL]. RSC Adv, 2018, 8(15): 8051−8056[2021-04-20]. https://pubs.rsc.org/en/content/articlelanding/2018/RA/C7RA12423F. DOI: 10.1039/c7ra12423f.
[34] Viitanen R, Moisio O, Lankinen P, et al. First-in-humans study of 68Ga-DOTA-siglec-9, a PET ligand targeting vascular adhesion protein 1[J]. J Nucl Med, 2021, 62(4): 577−583. DOI: 10.2967/jnumed.120.250696.
[35] Raynor W, Houshmand S, Gholami S, et al. Evolving role of molecular imaging with 18F-sodium fluoride PET as a biomarker for calcium metabolism[J]. Curr Osteoporos Rep, 2016, 14(4): 115−125. DOI: 10.1007/s11914-016-0312-5.
[36] Watanabe T, Takase-Minegishi K, Ihata A, et al. 18F-FDG and 18F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis[J]. Mod Rheumatol, 2016, 26(2): 180−187. DOI: 10.3109/14397595.2015.1069458.
[37] Put S, Westhovens R, Lahoutte T, et al. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques[J]. Arthritis Res Ther, 2014, 16(2): 208. DOI: 10.1186/ar4542.
[38] 郝林军, 王雪梅, 郝晋. 99Tcm-RGD显像在类风湿性关节炎血管形成早期诊断的初步探讨[J]. 国际放射医学核医学杂志, 2015, 39(2): 184−187. DOI: 10.3760/cma.j.issn.1673-4114.2015.02.018. Hao LJ, Wang XM, Hao J. Applications of 99Tcm-RGD for angiogenesis in early diagnosis of rheumatoid arthritis[J]. Int J Radiat Med Nucl Med, 2015, 39(2): 184−187. DOI: 10.3760/cma.j.issn.1673-4114.2015.02.018.
[39] 刘鹏, 董文涛, 苏新辉, 等. 靶向TSPO显像剂99Tcm-DTPA-CB86的制备及其对关节炎症的SPECT/CT显像研究[J]. 国际放射医学核医学杂志, 2018, 42(1): 47−52. DOI: 10.3760/cma.j.issn.1673-4114.2018.01.009. Liu P, Dong WT, Su XH, et al. Preparation and imaging of arthritis of 99Tcm-DTPA-CB86 for TSPO targeted imaging[J]. Int J Radiat Med Nucl Med, 2018, 42(1): 47−52. DOI: 10.3760/cma.j.issn.1673-4114.2018.01.009.