[1] Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 93: 52−79. DOI: 10.1016/j.ejpb.2015.03.018.
[2] Chauhan AS. Dendrimers for drug delivery[J/OL]. Molecules, 2018, 23(4): 938[2021-06-12]. https://www.mdpi.com/1420-3049/23/4/938. DOI: 10.3390/molecules23040938.
[3] Ghaffari M, Dehghan G, Abedi-Gaballu F, et al. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting[J]. Eur J Pharm Sci, 2018, 122: 311−330. DOI: 10.1016/j.ejps.2018.07.020.
[4] Mittal P, Saharan A, Verma R, et al. Dendrimers: a new race of pharmaceutical nanocarriers[J/OL]. Biomed Res Int, 2021, 2021: 8844030[2021-06-12]. https://www.hindawi.com/journals/bmri/20>21/8844030. DOI: 10.1155/2021/8844030.
[5] Palmerston Mendes L, Pan JY, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy[J/OL]. Molecules, 2017, 22(9): 1401[2021-06-12]. https://www.mdpi.com/1420-3049/22/9/1401. DOI: 10.3390/molecules22091401.
[6] Duncan R, Izzo L. Dendrimer biocompatibility and toxicity[J]. Adv Drug Deliv Rev, 2005, 57(15): 2215−2237. DOI: 10.1016/j.addr.2005.09.019.
[7] Dias AP, Da Silva Santos S, Da Silva JV, et al. Dendrimers in the context of nanomedicine[J]. Int J Pharm, 2020, 573: 118814. DOI: 10.1016/j.ijpharm.2019.118814.
[8] Sherje AP, Jadhav M, Dravyakar BR, et al. Dendrimers: a versatile nanocarrier for drug delivery and targeting[J]. Int J Pharm, 2018, 548(1): 707−720. DOI: 10.1016/j.ijpharm.2018.07.030.
[9] Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine[J/OL]. Molecules, 2020, 25(17): 3982[2021-06-12]. https://www.mdpi.com/1420-3049/25/17/3982. DOI: 10.3390/molecules25173982.
[10] Vu MT, Bach LG, Nguyen DC, et al. Modified carboxyl-terminated PAMAM dendrimers as great cytocompatible nano-based drug delivery system[J/OL]. Int J Mol Sci, 2019, 20(8): 2016[2021-06-12]. https://www.mdpi.com/1422-0067/20/8/2016. DOI: 10.3390/ijms20082016.
[11] Wang H, Chang H, Zhang Q, et al. Fabrication of low-generation dendrimers into nanostructures for efficient and nontoxic gene delivery[J]. Top Curr Chem (Cham), 2017, 375(3): 62. DOI: 10.1007/s41061-017-0151-6.
[12] Chanphai P, Tajmir-Riahi HA. Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology[J]. J Biomol Struct Dyn, 2018, 36(7): 1918−1924. DOI: 10.1080/07391102.2017.1341339.
[13] Thanh VM, Nguyen TH, Tran TV, et al. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release[J]. Mater Sci Eng C Mater Biol Appl, 2018, 82: 291−298. DOI: 10.1016/j.msec.2017.07.051.
[14] Castro RI, Forero-Doria O, Guzmán L. Perspectives of dendrimer-based nanoparticles in cancer therapy[J]. An Acad Bras Cienc, 2018, 90(2 Suppl 1): S2331−2346. DOI: 10.1590/0001-3765201820170387.
[15] 冯成涛, 张海波, 郑皓等. 131I-PAMAM(G5.0)介导靶向肽在甲状腺髓样癌模型中的实验研究[J]. 国际放射医学核医学杂志, 2019, 43(6): 528−537. DOI: 10.3760/cma.j.issn.1673−4114.2019.06.007. Feng CT, Zhang HB, Zheng H, et al. Efficiacy of 131I-generation 5.0 polyamidamine-mediated targeting peptide in the mice with medullary thyroid carcinoma[J]. Int J Radiat Med Nucl Med, 2019, 43(6): 528−537. DOI: 10.3760/cma.j.issn.1673−4114.2019.06.007.
[16] Tekade RK, Dutta T, Tyagi A, et al. Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy[J]. J Drug Target, 2008, 16(10): 758−772. DOI: 10.1080/10611860802473154.
[17] Qi R, Majoros I, Misra AC, et al. Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis[J]. J Biomed Nanotechnol, 2015, 11(8): 1431−1441. DOI: 10.1166/jbn.2015.2077.
[18] Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations[J]. Pharm Res, 2015, 32(4): 1438−1450. DOI: 10.1007/s11095-014-1549-2.
[19] Zhu JY, Shi XY. Dendrimer-based nanodevices for targeted drug delivery applications[J]. J Mater Chem B, 2013, 1(34): 4199−4211. DOI: 10.1039/c3tb20724b.
[20] Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics[J]. Ther Deliv, 2013, 4(3): 369−394. DOI: 10.4155/tde.13.6.
[21] Anbazhagan R, Muthusamy G, Krishnamoorthi R, et al. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance[J]. Biotechnol Bioeng, 2021, 118(3): 1213−1223. DOI: 10.1002/bit.27645.
[22] Jain NK, Tare MS, Mishra V, et al. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel[J]. Nanomedicine, 2015, 11(1): 207−218. DOI: 10.1016/j.nano.2014.09.006.
[23] Marcinkowska M, Stanczyk M, Janaszewska A, et al. Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy[J]. Pharm Res, 2019, 36(11): 154. DOI: 10.1007/s11095-019-2683-7.
[24] Yousef S, Alsaab HO, Sau S, et al. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma[J/OL]. Heliyon, 2018, 4(12): e01071[2021-06-12]. https://www.sciencedirect.com/science/article/pii/S2405844018339604. DOI: 10.1016/j.heliyon.2018.e01071.
[25] Xiao TT, Li D, Shi XY, et al. PAMAM dendrimer-based nanodevices for nuclear medicine applications[J]. Macromol Biosci, 2020, 20(2): e1900282. DOI: 10.1002/mabi.201900282.
[26] Jeon J. Review of therapeutic applications of radiolabeled functional nanomaterials[J/OL]. Int J Mol Sci, 2019, 20(9): 2323[2021-06-12]. https://www.mdpi.com/1422-0067/20/9/2323. DOI: 10.3390/ijms20092323.
[27] 钟建秋. 131I标记肿瘤靶向复合物RGDyC-PEG-PAMAM的合成过程及其生物活性研究[D]. 广州: 广东药科大学, 2017. Zhong JQ. Study on the synthesis and bioactivity of 131I-labeled tumor targeting complex RGDyC-PEG-PAMAM[D]. Guangzhou: Guangdong Pharmaceutical University, 2017.
[28] Song NN, Zhao LZ, Xu XY, et al. LyP-1-modified multifunctional dendrimers for targeted antitumor and antimetastasis therapy[J]. ACS Appl Mater Interfaces, 2020, 12(11): 12395−12406. DOI: 10.1021/acsami.9b18881.
[29] Akbari-Karadeh S, Aghamiri SMR, Tajer-Mohammad-Ghazvini P, et al. Radiolabeling of biogenic magnetic nanoparticles with rhenium-188 as a novel agent for targeted radiotherapy[J]. Appl Biochem Biotechnol, 2020, 190(2): 540−550. DOI: 10.1007/s12010-019-03079-x.
[30] Tassano M, Oddone N, Fernández M, et al. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells[J]. Int J Radiat Biol, 2018, 94(7): 664−670. DOI: 10.1080/09553002.2018.1478161.
[31] Dash A, Pillai MRA, Knapp Jr FF. Production of 177Lu for targeted radionuclide therapy: available options[J]. Nucl Med Mol Imaging, 2015, 49(2): 85−107. DOI: 10.1007/s13139-014-0315-z.
[32] Mendoza-Nava H, Ferro-Flores G, de María Ramírez F, et al. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu–dendrimer-AuNP–folate–bombesin nanoprobe located inside cancer cells[J]. Mol Imaging, 2017, 16: 1536012117704768. DOI: 10.1177/1536012117704768.
[33] Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let's meet the challenge[J]. Int J Pharm, 2010, 394(1/2): 122−142. DOI: 10.1016/j.ijpharm.2010.04.027.