PET、SPECT及MRS在帕金森病诊断中的应用

董爱生 田建明

引用本文:
Citation:

PET、SPECT及MRS在帕金森病诊断中的应用

  • 中图分类号: R814.42;R817.4

The application of PET、SPECT and MRS in Parkinson's disease

  • CLC number: R814.42;R817.4

  • 摘要: PET和SPECT可以在体研究帕金森病患者黑质纹状体多巴胺能系统退变的神经化学、血流动力学及代谢改变,脑血流和代谢的激活研究表明,帕金森病患者补偿运动区和背侧额叶前部运动区的激活功能受损。纹状体多巴胺能神经元退变可以通过PET和SPECT进行定量分析,在帕金森病患者中纹状体对18F标记的多巴摄取明显下降,壳核比尾状核下降明显,且与运动异常症状的严重程度及病程呈负相关。PET和SPECT使无创评价多巴胺受体密度的变化成为可能。同时,MRS可以揭示脑内几种含氢含磷化合物的浓度变化。应用这些互相补充的技术可获得关于帕金森病脑功能的信息。
  • [1] Gelb DJ, Oliver E, Gilman S, et al. Diagnostic criteria for Parkinson's disease[J]. Arch Neurol, 1999, 56(1):33-39.
    [2] Antonini A, Moeller JR, Nakamura T, et al. The metabolic anatomy of tremor in Parkinson's disease[J]. Neurology, 1998, 51(3):803-810.
    [3] Van Laere K, Santens P, Bosman T, et al. Statistical parametric mapping of (99m)Tc-ECD SPECT in idiopathic Parkinson's disease and multiple system atrophy with predominant parkinsonian features:correlation with clinical parameters[J]. J Nucl Med, 2004,45(6):933-942.
    [4] Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum:evidence from a FDG-PET study in advanced Parkinson's disease[J]. J Cereb Blood Flow Metab, 2004, 24(1):7-16.
    [5] Rascol O, Sabatini U, Chollet F, et al. Supplementary and primary sensory motor area activity in parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorhpine[J]. Arch Neurol, 1992, 49(2):144-148.
    [6] Samuel M, Ceballos-Baumann AO, Blin J, et al. Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study[J]. Brain,1997, 120(pt6):963-976.
    [7] Thobois S, Dominey P, Decety J, et al. Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients:a PET study[J]. Neuroreport, 2000, 11(4):785-789.
    [8] Rascol O, Sabatini U, Fabre N, et al. The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients[J]. Brain, 1997, 120(pt1):103-110.
    [9] Rascol O, Sabatini U, Brefel C, et al. Cortical motor overactivation in parkinsonian patients with L-dopa-induced peak-dose dyskinesia[J]. Brain, 1998, 121(pt3):527-533.
    [10] Broussolle E, Dentresangle C, Landais P, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease[J]. J Neurol Sci, 1999, 166(2):141-151.
    [11] Rousset OG, Deep P, Kuwabara H, et al. Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[18F]fluoro-L-dopa studies with PET in normal control and Parkinson's disease subjects[J]. Synapse, 2000, 37(2):81-89.
    [12] Hilker R, Schweitzer K, Coburger S, et al. Nonlinear progression o fParkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F-18 activity[J]. Arch Neurol, 2005,62(3):378-382.
    [13] Brock A, Aalto S, Nurmi E, Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson's disease[J].Neurobiol Aging, 2005, 26(6):891-898.
    [14] Chou KL, Hurtig HI, Stern MB, et al. Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson's disease[J]. Parkinsonism Relat Disord, 2004, 10(6):375-379.
    [15] Shyu WC, Lin SZ, Chiang MF, et al, Early-onset Parkinson's disease in a Chinese population:99Tcm-TRODAT-1 SPECT, Parkin gene analysis and clinical study[J]. Parkinsonism Relat Disord, 2005,11(3):173-180.
    [16] Hu P, Chen L, Zhang HQ, et al. Single photon emission computer tomography of dopamine transporters in monkeys and humans with 99Tcm-TRODAT-1[J]. Chin Med J (Engl), 2004, 117(7):1056-1059.
    [17] Huang WS, Lee MS, Lin JC, et al. Usefulness of brain 99Tcm-TRODAT-1 SPET for the evaluation of Parkinson's disease[J]. Eur J Nucl Med Mol Imaging, 2004, 31(2):155-161.
    [18] Nurmi E, Ruottinen HM, Kaasinen V, et al. Progression in Parkinson's disease:a positron emission tomography study with dopamine transporter ligand [18F]CFT[J]. Ann Neurol, 2000, 47(6):804-808.
    [19] Tatsch K. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson's disease?[J]. Eur J Nucl Med, 2002, 29(5):711-714.
    [20] Stoessl AJ. Neurochemical and neuroreceptor imaging with PET in Parkinson's disease[J]. Adv Neurol, 2001, 86:215-223.
    [21] Lee CS, Samii A, Sossi I, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease[J]. Ann Neurol, 2000, 47(4):493-503.
    [22] Kaasinen V, Ruottinen HM, Nagren K, et al. Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease:a comparative PET study with [11C] raclopfide and [11C]N-methylspiperone[J].J Nucl Med, 2000, 41(1):65-70.
    [23] Dentresangle C, Veyre L, Le Bars D, et al. Striatal D2 dopamine receptor status in Parkinson's disease. A[18F]-Dopa and [11C]raclopride PET study[J]. Mov Disord, 1999, 14(6):1025-1030.
    [24] Kaasinen V, Nagren K, Hietala J, et al. Extrastriatal dopamine D (2) receptors in Parkinson's disease:a longitudinal study[J]. J Neural Transm, 2003, 110(6):591-601.
    [25] Kaasinen V, Nagren K, Hietala J, et al. Extrasriatal dopamine D2 and D3 receptors in early and advanced Parkinson's disease[J].Neurology, 2000, 54(7):1482-1487.
    [26] Turjanski N, Lees AJ, Brooks DJ. In vivo studies on stfiatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson's disease patients with and without dyskinesias[J]. Neurology, 1997, 49(3):717-723.
    [27] Zheng XN, Zhu XC, Ruan LX, et al. MRS study on lentiform nucleus in idiopathic Parkinson's disease with unilateral symptoms[J]. J Zhejiang Univ Sci, 2004.5(2):246-250.
    [28] Hu MT, Taylor-Robinson SD, Chaudhuri KR, et al. Evidence for cortical dysfunction in clinically non-demented patients with Parkinson's disease:a proton MR spectroscopy study[J]. J Neurol Nettrosurg Psychiatry, 1999, 67(1):20-26.
    [29] Baik HM, Choe BY, Lee HK, et al. Metabolic alterations in Parkinson's disease after thalamotomy, as revealed by(1)H MR spectroscopy[J]. Korean J Radiol, 2002, 3(3):180-188.
    [30] Hu MT, Taylor-Robinson SD, Chaudhuri KR, et al. Cortical dysfunction in non-demented Parkinson's disease patients:A combined 31P-MRS and 18F-FDG-PET study[J]. Brain, 2000, 123(2):340-352.
  • [1] 李童童楼菁菁刘兴党 . 帕金森病心脏神经受体显像的最新研究进展. 国际放射医学核医学杂志, 2022, 46(2): 107-111. doi: 10.3760/cma.j.cn121381-202102022-00130
    [2] 许靖李肖红秦永德张奇洲李毓斌刘立水谢彬 . 帕金森病脑部葡萄糖代谢和脑多巴胺转运体PET显像特点的临床研究. 国际放射医学核医学杂志, 2016, 40(5): 338-344. doi: 10.3760/cma.j.issn.1673-4114.2016.05.003
    [3] 邓玮玮张春银 . 放射性核素显像在帕金森病鉴别诊断中的应用. 国际放射医学核医学杂志, 2017, 41(2): 132-136. doi: 10.3760/cma.j.issn.1673-4114.2017.02.010
    [4] 谭海波刘兴党 . PET在神经干细胞移植治疗帕金森病研究中的进展. 国际放射医学核医学杂志, 2004, 28(6): 253-256.
    [5] 李海峰张晓军张锦明 . 多巴胺转运蛋白显像剂11C-β-CFT在帕金森病中的应用研究. 国际放射医学核医学杂志, 2016, 40(3): 218-224. doi: 10.3760/cma.j.issn.1673-4114.2016.03.011
    [6] 田季雨 . PET在帕金森病病理机制研究中的应用近况. 国际放射医学核医学杂志, 2003, 27(2): 53-55.
    [7] 冯燕韻徐志锋贺小红吴文秀刘健萍罗纯 . MR定量磁化率成像在帕金森病临床诊断中的价值研究. 国际放射医学核医学杂志, 2020, 44(7): 429-434. doi: 10.3760/cma.j.cn121381-202001026-00044
    [8] 韩贵娟谢晓菲宋普姣王明华 . 帕金森患者脑多巴胺转运体11C-CFT PET/CT显像特点的分析. 国际放射医学核医学杂志, 2022, 46(5): 270-276. doi: 10.3760/cma.j.cn121381-202202001-00174
    [9] 董爱生田建明 . 部分癫痫的神经影像学诊断. 国际放射医学核医学杂志, 2005, 29(4): 148-151.
    [10] 袁志斌 . 正电子肿瘤阳性显像剂18F-AMT. 国际放射医学核医学杂志, 2002, 26(5): 193-195.
  • 加载中
计量
  • 文章访问数:  1258
  • HTML全文浏览量:  283
  • PDF下载量:  2
出版历程
  • 收稿日期:  2005-01-20

PET、SPECT及MRS在帕金森病诊断中的应用

  • 200433 上海, 第二军医大学长海医院放疗科

摘要: PET和SPECT可以在体研究帕金森病患者黑质纹状体多巴胺能系统退变的神经化学、血流动力学及代谢改变,脑血流和代谢的激活研究表明,帕金森病患者补偿运动区和背侧额叶前部运动区的激活功能受损。纹状体多巴胺能神经元退变可以通过PET和SPECT进行定量分析,在帕金森病患者中纹状体对18F标记的多巴摄取明显下降,壳核比尾状核下降明显,且与运动异常症状的严重程度及病程呈负相关。PET和SPECT使无创评价多巴胺受体密度的变化成为可能。同时,MRS可以揭示脑内几种含氢含磷化合物的浓度变化。应用这些互相补充的技术可获得关于帕金森病脑功能的信息。

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回