高剂量率后装192Ir源剂量测试研究进展

张书旭 李文华 徐海荣

引用本文:
Citation:

高剂量率后装192Ir源剂量测试研究进展

  • 基金项目:

    广东省自然科学基金资助项目(37065)

    广东省科技计划资助项目(C30601)

  • 中图分类号: R144.1

Dosimetric advancement of high-dose-rate after-loading 192Ir source

  • CLC number: R144.1

  • 摘要: 现代后装治疗大多采用HDR(高剂量率)微型192Ir源,其近源区剂量特性常用针点电离室、热释光剂量计测量,但ESR(电子自旋共振)胶片法测量的空间分辨率更高,可达156μm,而蒙特卡罗光子输运模拟方法是衡量测量准确度的金标准。用热释光剂量计进行直肠内剂量测量是预测直肠并发症发生率的良好指针。慢感光胶片测量192Ir源二维剂量分布精度可达1%,用基于MR(核磁共振)的凝胶剂量计测量192Ir源三维剂量分布准确度可达2.5%、空间分辨率达1.56mm,光学体层成像凝胶剂量计测量三维剂量分布具有独特的优势。
  • [1] Gromoll C, Karg A. Determination of the dose characteristics in the near area of a new type of 192Ir-HDR afterloading source with a pinpoint ionization chamber[J]. Phys Med Biol,2002, 47(6):875-887.
    [2] Reynaert N, Van Eijkeren M, Taeymans Y, et al. Dosimetry of 192Ir sources used for endovascular brachytherapy[J]. Phys Med Biol, 2001, 46(2):499-516.
    [3] Daskalov GM, Loffler E, Williamson JF. Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source[J].Med Phys, 1998, 25(11):2200-2208.
    [4] Olsson S, Bergstrand ES, Carlsson AK, et al. Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192Ir brachytherapy source, using ESR spectroscopy[J]. Phys Med Biol, 2002, 47(8):1333-1356.
    [5] Brezovich IA, Duan J, Pareek PN, et al. In vivo urethral dose measurements:a method to verify high dose rate prostate treatments[J]. Med Phys, 2000, 27(10):2297-2301.
    [6] Hood C, Duggan L, Bazley S, et al. LiF:Mg, Cu, P 'pin worms':miniature detectors for brachytherapy dosimetry[J].Radiat Prot Dosim, 2002, 101(4):407-410.
    [7] Anagnostopoulos G, Baltas D, Geretschlaeger A, et al. In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CTbased planning for the treatment of prostate cancer[J].Int J Radiat Oncol Biol Phys, 2003,57(4):1183-1191.
    [8] Huh S J, Lim DH, Ahn YC, et al. Comparison between in vivo dosimetry and barium contrast technique for prediction of rectal complications in high-dose-rate intracavitary radiotherapy in cervix cancer patients[J]. Strahlenther Onkol,2003, 179(3):191-196.
    [9] Pai S, Reinstein LE, Gluckman G, et al. The use of improved radiochromic film for in vivo quality assurance of high dose rate brachytherapy[J]. Med Phys, 1998, 25(7):1217-1221.
    [10] Empesy JF, Low DA, Mutic S, et al. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imageing of acute exposure dose distributions[J].Med Phys, 2000, 27(10):2462-2475.
    [11] Nutsen BH, Skretting A, Hellebust TP, et al. Determination of 3D dose distribution from intracavitary brachytherapy of cervical cancer by MRI of irradiated ferrous sulphate gel[J].Radiother Oncol, 1997, 43(2):219-227.
    [12] Scherer J, Bogner L, Herbst M. The verification of optimized 3D-dosage distributions with an MR Fricke gel[J]. Strahlenther Onkol, 1997, 173(1):36-42.
    [13] Calmet C, Vincensini D, Bonnet J, et al. MRI dosimetry:a fast quantitative MRI method to determine 3D absorbed dose distributions[J]. Invest Radiol, 1999, 34(3):236-241.
    [14] Silva NA, Nicolucci P, Baffa O. Spatial resolution of magnetic resonance imaging Fricke-gel dosimetry is improved with a honeycomb phantom[J]. Med Phys, 2003, 30(1):17-20.
    [15] Mather ML, Baldock C. Ultrasound tomography imaging of radiation dose distributions in polymer gel dosimeters:preliminary study[J]. Med Phys, 2003, 30(8):2140-2148.
    [16] Kipouros P, Pappas E, Baras P, et al. Wide dynamic dose range of VIPAR polymer gel dosimetry[J]. Phys Med Biol,2001, 46(8):2143-2159.
    [17] Baras P, Seimenis I, Kipouros P, et al. Polymer gel dosimetry using a three-dimensional MRI acquisition technique[J].MedPhys, 2002, 29(11):2506-2516.
    [18] Oldham M, Siewerdsen JH, Shetty A, et al. High resolution gel-dosimetry by optical-CT and MR scanning[J]. Med Phys,2001, 28(7):1436-1445.
    [19] Pantelisl E, Papagiannis P, Anagnostopoulos G. Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties[J].Phus Med Biol, 2004, 49(7):55-67.
    [20] Datta NR, Basu R, Das KJ, et al. Problems in reporting doses and volumes during multiple high-dose-rate intracavitary brachytherapy for carcinoma cervix as per ICRU Report 38:a comparative study using flexible and rigid applicators[J].Gynecol Oncol, 2003,91(2):285-292.
  • [1] 冯仲苏徐晓刘芬192Ir高剂量率后装治疗剂量准确性的质量控制. 国际放射医学核医学杂志, 2008, 32(6): 376-378.
    [2] 曾兴炳赵德明 . 胆管癌外照射与腔内192Ir植入相结合对放疗剂量的影响. 国际放射医学核医学杂志, 1995, 19(1): 24-24.
    [3] 马蕊张良安 . 高剂量率近距离放射治疗前列腺癌. 国际放射医学核医学杂志, 2007, 31(3): 191-193.
    [4] 曾兴炳赵德明 . 膀胱癌的192Ir组织间治疗. 国际放射医学核医学杂志, 1993, 17(4): 188-188.
    [5] 吴伟章 . 三维适形放疗和调强放射治疗. 国际放射医学核医学杂志, 2004, 28(4): 185-188.
    [6] 贺先桃陈绍俊谭军文李钢冯永富龙雨松 . 不同HR-CTV下单纯腔内治疗与腔内联合组织间插植治疗在宫颈癌三维后装治疗中的对比研究. 国际放射医学核医学杂志, 2022, 46(5): 290-297. doi: 10.3760/cma.j.cn121381-202106007-00177
    [7] 朱云云傅志超陈杰廖绍光冯静沈志勇应文敏 . MRI影像与CT影像勾画宫颈癌三维腔内后装放疗靶区体积的比较. 国际放射医学核医学杂志, 2020, 44(4): 231-235. doi: 10.3760/cma.j.cn121381-201908031-00024
    [8] 赵德明洪元康 . Ⅰ、Ⅱ期乳癌术中植入192Ir作为增强治疗:10年655例患者研究. 国际放射医学核医学杂志, 1995, 19(4): 167-167.
    [9] 林春培192Ir微型源中的60Co放射性. 国际放射医学核医学杂志, 1994, 18(1): 23-23.
    [10] 金性江王贻琮张卿西 . 放射治疗中使用低剂量率照射的放射生物学分析. 国际放射医学核医学杂志, 1981, 5(3): 147-151.
  • 加载中
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  133
  • PDF下载量:  2
出版历程
  • 收稿日期:  2004-03-29

高剂量率后装192Ir源剂量测试研究进展

  • 1. 510095 广州, 广州市肿瘤医院放疗中心;
  • 2. 510515 广州, 第一军医大学生物医学工程系
基金项目:  广东省自然科学基金资助项目(37065)广东省科技计划资助项目(C30601)

摘要: 现代后装治疗大多采用HDR(高剂量率)微型192Ir源,其近源区剂量特性常用针点电离室、热释光剂量计测量,但ESR(电子自旋共振)胶片法测量的空间分辨率更高,可达156μm,而蒙特卡罗光子输运模拟方法是衡量测量准确度的金标准。用热释光剂量计进行直肠内剂量测量是预测直肠并发症发生率的良好指针。慢感光胶片测量192Ir源二维剂量分布精度可达1%,用基于MR(核磁共振)的凝胶剂量计测量192Ir源三维剂量分布准确度可达2.5%、空间分辨率达1.56mm,光学体层成像凝胶剂量计测量三维剂量分布具有独特的优势。

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回