放射性脑损伤分子机制及神经保护策略研究进展

高波 王学建

引用本文:
Citation:

放射性脑损伤分子机制及神经保护策略研究进展

    通讯作者: 王学建, gygb2004@yahoo.com.cn
  • 中图分类号: R818.74

Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    Corresponding author: WANG Xue-jian, gygb2004@yahoo.com.cn
  • CLC number: R818.74

  • 摘要: 放射性脑损伤(RBI)的潜在分子机制目前尚不完全清楚。RBI的形成是中枢神经系统内神经元、胶质细胞和血管内皮细胞之间复杂的、动态的相互作用过程。随着放射治疗的广泛应用,对RBI的神经保护治疗逐渐得到重视,提出了相应的神经保护策略。
  • [1] 何子毅,孟庆勇.电离辐射与细胞凋亡.国外医学·放射医学核医学分册,2004,28(2):90-93.
    [2] Schuler M, Green DR. Mechanisms of p53-dependent apoptosis.Biochem Soe Trans, 2001, 29(pt6):684-688.
    [3] Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system:Protection by fibroblast growth factor, and sphingomyelinase deficiency.Cancer Res, 2000, 60(2):321-327.
    [4] Gulbins E, Li PL. Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol, 2006, 290(1):R11-R26.
    [5] Li YQ, Chen P, Jain V, et al. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res, 2004, 161(2):143-152.
    [6] Chari DM, Huang WL, Blakemore WF. Dysfunctional oligodendroeyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue. J Neurosei Res, 2003, 73(6):787-793.
    [7] Atrkinson SL, Li YQ, Wong CS. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord. Int J Radiat Oncol Siol Phys, 2005,62(2):535-544.
    [8] Nordal RA, Nagy A, Pintilie M, et al. Hypoxia and hypoxia inducible factor-1 target genes in central nervous system radiation injury:A role for vascular endothelial growth factor. Clin Cancer Res, 2004, 10(10):3342-3353.
    [9] Stys PK. White matter injury mechanisms. Curr Mol Med, 2004, 4(2):113-130.
    [10] Arvold ND, Guha N, Wang D, et al. Hypoxia-induced radioresistance is independent of hypoxia-inducible factor-1A in vitro. Int J Radiat Oncol Biol Phys, 2005, 62(1):207-212.
    [11] Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropath Exp Neurol, 2004, 63(5):474-483.
    [12] Yuan H, Gaber MW, Mccolgan T, et al. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier. Modulation with anti-ICAM-1 antibodies. Brain Res, 2003, 969(1-2):59-69.
    [13] Moore AH, Olschowka JA, Williams JP, et al. Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain.Radiat Res, 2004, 161(2):153-160.
    [14] Abrous DN, Koehl M, LeMoal M. Adult neurogenesis:from precursors to network and physiology. Physiol Rev, 2005, 85(2):523-569.
    [15] Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol, 2004, 188(2):316-330.
    [16] Mizumatsu S, Monje ML, Morhardt DR, et al. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res,2003, 63(14):4021-4027.
    [17] Limoli CL, Giedzinski E, Rola R, et al. Radiation response of neural precursor cells:linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat Res, 2004, 161(1):17-27.
    [18] Gu Q, Wang D, Wang X, et al. Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. Ⅰ. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat Res,2004, 161(6):692-702.
    [19] Gu Q, Wang D, Wang X, et al. Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. Ⅱ. The RAS/MAPK pathway and phosphorylation of BAD at serine 112. Radiat Res, 2004, 161(6):703-711.
    [20] 朱广迎,梁克,蔡伟明.978-1对小鼠放射性脑损伤的作用及分子机制.中华放射肿瘤学杂志,2001,10(1):38-41.
    [21] Danton GH, Dietrich WD. The search for neuroprotective strategies in stroke. Am J Neuroradiol, 2004, 25(2):181-194.
    [22] Tirilazad International Steering Committee. Tirilazad mesylate in acute ischemic stroke:A systematic review. Stroke, 2000, 31(9):2257-2265.
    [23] Guelman LR, Zorrilla Zubilete MA, Rios H, et al. GM1 ganglioside treatment protects against long-term neurotoxic effects of neonatal X-irradiation on cerebellar cortex cytoarchitecture and motor function. Brain Res, 2000, 858(2):303-311.
    [24] 唐亚梅,张殷殷,王莉梅,等.神经节苷酯对鼠脑放射性损伤后空间学习记忆力下降的影响.中国临床康复,2005,9(16):254-256.
    [25] Epperly MW, Tyurina YY, Nie S, et al. MnSOD-plasmid liposome gene therapy decreases ionizing irradiation-induced lipid peroxidation of the esophagus. In Vivo, 2005, 19(8):997-1004.
    [26] Soares MP, Seldon MP, Gregoire IP, et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol, 2004, 172(6):3553-3563.
    [27] Lu F, Wong CS. A clonogenic survival assay of neural stem cells in rat spinal cord after exposure to ionizing radiation. Radiat Res,2005, 163(1):63-71.
    [28] Rezvani M, Birds DA, Hodges H, et al. Modification of radiation myelopathy by the transplatation of neural stem cells in the rat.Radiat Res, 2001, 156(4):408-412.
  • [1] 杨美玉王利利涂彧 . 镁离子对放射性脑损伤的脑保护作用. 国际放射医学核医学杂志, 2010, 34(6): 363-366. doi: 10.3760/cma.j.issn.1673-4114,2010.06.012
    [2] 杨美玉王利利涂彧 . 镁离子对放射性脑损伤的脑保护作用. 国际放射医学核医学杂志, 2010, 34(6): 363-366. doi: 10.3760/cma.j.issn.1673-4114.2010.06.012
    [3] 郑慧芬涂彧18F-氟脱氧葡萄糖PET在放射性脑损伤诊断中的应用. 国际放射医学核医学杂志, 2008, 32(3): 140-143.
    [4] 黄蓉蓉丁桂荣 . 小胶质细胞在放射性脑损伤中的作用及其机制研究进展. 国际放射医学核医学杂志, 2021, 45(2): 124-131. doi: 10.3760/cma.j.cn121381-202005040-00018
    [5] 袁文佳涂彧崔凤梅 . 放射性脑损伤的发病机制及治疗. 国际放射医学核医学杂志, 2008, 32(4): 250-254.
    [6] 于明明王振光 . 创伤性脑损伤PET显像研究进展. 国际放射医学核医学杂志, 2015, 39(2): 157-160. doi: 10.3760/cma.j.issn.1673-4114.2015.02.012
    [7] 张玮王利利涂彧 . 中枢神经系统电离辐射效应的细胞和分子机制研究进展. 国际放射医学核医学杂志, 2008, 32(3): 179-182.
    [8] 王利利涂彧周菊英俞志英秦颂兵徐晓婷李莉 . 硫酸镁对大鼠急性放射性脑损伤后脂质过氧化的抑制作用. 国际放射医学核医学杂志, 2007, 31(1): 37-39,54.
    [9] 钟静姜恩海 . 放射性脑损伤发病机制及免疫系统改变的研究. 国际放射医学核医学杂志, 2006, 30(5): 301-304.
    [10] 党连荣何勤义 . 低场强MRI对急性CO中毒脑损伤的诊断价值. 国际放射医学核医学杂志, 2012, 36(5): 307-309. doi: 10.3760/cma.j.issn.1673-4114.2012.05.010
  • 加载中
计量
  • 文章访问数:  1473
  • HTML全文浏览量:  160
  • PDF下载量:  4
出版历程
  • 收稿日期:  2006-05-24

放射性脑损伤分子机制及神经保护策略研究进展

摘要: 放射性脑损伤(RBI)的潜在分子机制目前尚不完全清楚。RBI的形成是中枢神经系统内神经元、胶质细胞和血管内皮细胞之间复杂的、动态的相互作用过程。随着放射治疗的广泛应用,对RBI的神经保护治疗逐渐得到重视,提出了相应的神经保护策略。

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回