辐射损伤与细胞周期

姚莉

引用本文:
Citation:

辐射损伤与细胞周期

  • 中图分类号: Q253;Q811.5

Radiation injury and cell cycle

  • CLC number: Q253;Q811.5

  • 摘要: 辐射后的细胞可能发生恶性转化,可能死亡,另有一些细胞对辐射却产生适应性或抗性,最终长期存活下来。近年来研究发现,此差异与辐射对细胞周期的影响密切相关。辐射可阻断细胞周期活动及延长细胞周期,其中G1期、S期和G2/M期等细胞周期检查点(checkpoint)起决定作用,它们分别通过不同的信号途径对辐射所致的损伤进行调控,产生不同的辐射生物学效应。对该领域的深入研究不仅为进一步阐释辐射致癌提供一定的理论依据,而且为临床放疗增敏剂的研制提供新的思路。
  • [1] Foray N, Marot D, Gabriel A, et al. A subset of ATM-and ATR-dependent phosphorylation events requires the BRCA1 protein[J]. EMBO J, 2003, 22(11):2860-2871.
    [2] Zhang Y, Ma WY, Kaji A, et al. Requirement of ATM in UVA-induced signaling and apoptosis[J]. J Biol Chem,2002, 277(5):3124-3131.
    [3] Syljuasen RG, Krolewski B, Little JB. Molecular events in radiation transformation[J]. Radiat Res, 2001, 155(1 Pt 2):215-221.
    [4] Matsui Y, Tsuchida Y, Keng PC. Effects of p53 mutations on cellular sensitivity to ionizing radiation[J]. Am J Clin Oncol, 2001, 24(5):486-490.
    [5] DeSimone JN, Bengtsson U, Wang X, et al. Complexity of the mechanisms of initiation and maintenance of DNA damage-induced G2-phase arrest and subsequent G1-phase arrest:TP53-dependent and TP53-independent roles[J].Radiat Res, 2003, 159(1):72-85.
    [6] Wieler S, Gagne JP, Vaziri H, et al. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation[J]. J Biol Chem,2003, 278(21):18914-18921.
    [7] Xie G, Habbersett RC, Jia Y, et al. Requirements for p53 and the ATM gene product in the regulation of G1/S and S phase checkpoints[J]. Oncogene, 1998, 16(6):721-736.
    [8] Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53[J]. Science, 1998, 281(5383):1677-1679.
    [9] Maya R, Balass M, Kim ST, et al. ATM-dependent phosphorylation of Mdm2 on serine 395:role in p53 activation by DNA damage[J]. Genes Der, 2001, 15(9):1067-1077.
    [10] Tibbetts RS, Brumbaugh KM, Williams JM, et al. A role for ATR in the DNA damage-induced phosphorylation of p53[J]. Genes Dev, 1999, 13(2):152-157.
    [11] Zhou XY, Wang X, Wang H, et al. Ku affects the ATM-dependent S phase checkpoint following ionizing radiation[J].Oncogene, 2002, 21(41):6377-6381.
    [12] Wang X, Li GC, Iliakis G, et al. Ku affects the CHK1-dependent G(2) checkpoint after ionizing radiation[J]. Cancer Res, 2002, 62(21):6031-6034.
    [13] Paull TT. New glimpses of an old machine[J]. Cell, 2001,107(5):563-565.
    [14] Paull TT, Gellert M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50complex[J].Genes Dev, 1999, 13(10):1276-1288.
    [15] Lim DS,Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway[J]. Nature, 2000, 404(6778):613-617.
    [16] Metting NF, Little JB. Transient failure to dephosphorylate the cdc2-cyclin B 1 complex accompanies radiation-induced G2-phase arrest in HeLa cells[J].Radiat Res, 1995, 143(3):286-292.
    [17] Hain J, Weller EM, Jung T, et al. Effects of ionizing-and UV B-radiation on proteins controlling cell cycle progression in human cells:comparison of the MCF-7 adenocarcinoma and the SCL-2 squamous cell carcinoma cell line[J]. Int J Radiat Biol, 1996, 70(3):261-271.
    [18] Cortez D, Guntuku S, Qin J, et al. ATR and ATRIP:partners in checkpointsignaling[J]. Science, 2001, 294(5547):1713-1716.
    [19] Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases[J]. Genes Dev, 2001, 15(17):2177-2196.
    [20] Jiang W, Ananthaswamy HN, Muller HK, et al. UV irradiation augments lymphoid malignancies in mice with one functional copy of wild-type p53[J]. Proc Natl Acad Sci USA, 2001, 98(17):9790-9795.
    [21] Schwartz JL, Jordan R, Evans HH, et al. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells[J]. Radiat Res, 2003, 159(6):730-736.
    [22] Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine[J]. Cancer Res, 1999, 59(17):4375-4382.
    [23] Tenzer A, Pruschy M. Potentiation of DNA-damage-induced cytotoxicity by G2 checkpoint abrogators[J]. Curt Med Chem Anti-Canc Agents, 2003, 3(1):35-46.
  • [1] 高洋 . 存活素与辐射诱导的凋亡. 国际放射医学核医学杂志, 2003, 27(5): 236-238.
    [2] 闫风琴鞠桂芝 . 辐射及细胞因子对p21基因表达的调控作用. 国际放射医学核医学杂志, 2004, 28(6): 278-280.
    [3] 李雨民孙元明夏寿莹 . 辐射与细胞凋亡及其基因调控. 国际放射医学核医学杂志, 1995, 19(3): 125-128.
    [4] 鞠桂芝 . 辐射细胞效应. 国际放射医学核医学杂志, 1996, 20(1): 29-32.
    [5] 丁为民 . 电离辐射与细胞动力学. 国际放射医学核医学杂志, 2000, 24(3): 132-135.
    [6] 杨岩王娟王冠军 . 低剂量辐射对人骨髓间充质干细胞影响的研究. 国际放射医学核医学杂志, 2008, 32(3): 183-187.
    [7] 李超李莉许昌韶周菊英徐晓婷俞志英 . 脑胶质瘤SHG-44细胞株照射后子代辐射敏感性. 国际放射医学核医学杂志, 2008, 32(4): 236-239.
    [8] 孟祥兵叶常青 . 细胞周期与辐射诱发细胞恶性转化的敏感性. 国际放射医学核医学杂志, 1995, 19(1): 28-32.
    [9] 赵卫红陈家佩 . 细胞周期与凋亡. 国际放射医学核医学杂志, 1998, 22(2): 88-91.
    [10] 王小华余争平程天民 . 角质细胞生长因子及其辐射防护作用. 国际放射医学核医学杂志, 1999, 23(5): 233-235.
  • 加载中
计量
  • 文章访问数:  1114
  • HTML全文浏览量:  162
  • PDF下载量:  3
出版历程
  • 收稿日期:  2003-08-28

辐射损伤与细胞周期

  • 100850 北京, 北京军医学院病理学教研室讲师

摘要: 辐射后的细胞可能发生恶性转化,可能死亡,另有一些细胞对辐射却产生适应性或抗性,最终长期存活下来。近年来研究发现,此差异与辐射对细胞周期的影响密切相关。辐射可阻断细胞周期活动及延长细胞周期,其中G1期、S期和G2/M期等细胞周期检查点(checkpoint)起决定作用,它们分别通过不同的信号途径对辐射所致的损伤进行调控,产生不同的辐射生物学效应。对该领域的深入研究不仅为进一步阐释辐射致癌提供一定的理论依据,而且为临床放疗增敏剂的研制提供新的思路。

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回