电离辐射生物剂量研究现状

闵锐

引用本文:
Citation:

电离辐射生物剂量研究现状

  • 基金项目:

    国家自然科学基金资助项目(30370444)

  • 中图分类号: R144.1

Current progress in research of ionizing radiation biodosimetry

  • CLC number: R144.1

  • 摘要: 生物剂量计有物理剂量计不可替代的优势,其重要性和科学意义已为世界各国放射生物学家所重视。合理正确使用生物剂量计应建立在对其特性充分了解的基础上。本文简述近年来生物剂量计研究和应用的现状。
  • [1] Ballarini F and Ottolenghi A. Chromosome aberrations as biomarkers of radiation exposure:modeling basic mechanisms[J]. Adv Space Res, 2003, 31(6):1557-1568.
    [2] Duran A, Barquinero JF, Caballin MR, et al. Suitability of FISH painting techniques for the detection of partial body irradiations for biological dosimetry[J]. Radiat Res, 2002, 157(4):461-468.
    [3] Camparoto ML, Ramalho AT, Natarajan AT, et al. Translocation analysis by the FISH painting method for retrospective dose reconstruction in individuals exposed to ionizing radiation 10 yearn after exposure[J]. Mutat Res, 2003, 530(1-2):1-7.
    [4] Hoffmann W and Schmitz-Feuerhake I. How radiation-specific is dicentric assay?[J]. J Expo Anal Environ Epidemiol, 1999, 9(2):113-133.
    [5] Ramalho AT, Costa ML and Oliveira MS. Conventional radiationbiological dosimetry using frequencies of unstable chromosome aberration[J]. Mutat Res, 1998, 404(1-2):97-100.
    [6] Pala FS, Moquet JE, Edwards AA, et al. In vitro transmission of chromosomal aberrations through mitosis in human lymphocytes[J].Mutat Res, 2001, 474(1-2):139-146.
    [7] Lindholm C. Stable chromosome aberrations among finish nuclear power plant workers[J]. Radiat Prot Dosim, 2001, 93(2):143-150.
    [8] Hsieh WA, Lucas JN, Hwang JJ, et al. Biodosimetry using chromosomal translocations measured by FISH in a popula-tion chronically exposed to low dose rate 60Co gamma irradiation[J]. Int J Radiat Biol, 2001, 77(7):797-804.
    [9] Tawn EJ and Whitehouse CA. Stable chromosome aberration frequencies in men occupationally exposed to radiation[J]. J Radiol Prot, 2003, 23(4):269-278.
    [10] Wojcik A and Streffer C. Comparison of radiation induced aberration frequenciesin chromosome 1 and 2 of two human donors[J]. Int J Radiat Biol, 1998, 74(5):573-581.
    [11] Braselmann H, Kulka U, Huber R, et al. Distribution of radiation induced exchange aberrations in all human chromosome[J]. Int J Radiat Biol, 2003, 79(6):393-403.
    [12] Luomahaara S, Lindholm C, Mustonen R, et al. Distribution of radiation induced exchange aberrations in human chromosome 1, 2 and 4[J]. Int J Radiat Biol, 1999, 75(12):1551-1556.
    [13] Neronova E, Slozina N and Nikiforov A. Chromosome alteration in cleanup wprkers sampled years after the Chernobyl accident[J].Radiat Res, 2003, 160(1):46-51.
    [14] Tawn EJ and Whitehouse CA. Persistence of translooation frequencies in blood lymphocytes following radiotherapy:implications for retrospective radiation biodosimetry[J]. J Radiol Prot, 2003, 23(4):423-430.
    [15] Pressl S, Edwards A and Stephan G. The influence of age, sex and smoking habits on the background level of FISH detected translocations[J]. Mutat Res, 1999, 442(2):89-95.
    [16] Lucas JN, Deng W, Moore D, et al. Background ionizing radiation plays a minor role in the production if chromosome tranalocations in a control population[J]. Int J Radiat Biol, 1999, 75(7):819-827.
    [17] Karthikeya-Prabhu B, Venkatachalam P, Paul SF, et al. Comparison of inter-and intra-chromosomal aberrations in blood samlies exposed to different dose rates of gamma radiation[J]. Radiat Prot Dosim, 2003, 103(2):103-109.
    [18] Lindholm C, Romm H, Stephan G, et al. Intercomparison of translocation and dicentric frequencies between laboratories in a follow-up of the radiological accident in Estonia[J]. Int J Radiat Biol, 2002,78(10):883-890.
    [19] Lloyd DC, Moquet JE, Oram S, et al. Accidental intake of tritiated water:a cytogenetic follow-up case on translooation stability and dose reconstruction[J]. Int J Radiat Riol, 1998, 73(5):543-547.
    [20] Pantelias GE and Maillie HD. The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological dosimetry[J]. Radiat Res, 1984, 99(1):140-150.
    [21] Cornforth MN and Bedford JS. Ionizing radiation damage and its early development in chromosome[A]. In:Lett JT, Sin-clair Wk (eds.)[C]. 17 Academic Press, San Diego:Advances in Radiation Biology, 1993. 423-497.
    [22] Prasanna PG, Escalada ND, Blakely WF. Induction of premature chromosome condensation by a phosphates inhibitor and a protein kinase in unstimulated human PBL:a simple and rapid technique to study chromosome aberration using specific whole chromosome DNA hybridization probes for biological dosimetry[J].Mutat Res, 2000,466(2):131-141.
    [23] Kanda R, Hayata I, Lloyd DC. Easy biodosimetry for high dose radiation exposure using drug induced prematurely condensed chromosome[J]. Int J Radiat Biol, 1999, 75(4):441-446.
    [24] Durante M, George K, Yang TC. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes[J]. Radiat Res, 1997,148(5suppl):545-550.
    [25] Prasanna PG, Hamel CJ, Escalada ND, et al. Biological dosimetry using human interphase peripheral blood lymphocytes[J]. Mil Med,2002, 167(2 suppl):10-12.
    [26] Kirsch-Volders M, Sofuni T, Aavdema M, et al. Report from the in vitro micronucleus assay working group[J]. Mutat Res, 2003, 540(2):153-163.
    [27] Thierens H, Vral A, Barbe M, et al. A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay[J].Mutat Res, 1999, 445(1):105-111.
    [28] Mill AJ, Wells J, Hall SC, et al. A micronucleus induced in human lymphocytes:Comparative effects of X rays, alpha particles, beta particles and neutrons and implications for biological dosimetry[J].Radiat Res, 1996, 145(5):575-585.
    [29] Paillole N and Voisin P. Is micronuclei yield variabilitya problem for overexposure dose assessment to ionizing radiation?[J]. Mutat Res, 1998, 413(1):47-56.
    [30] Catalan J, Autio K, Kuosma E, et al. Age-dependent inclusion of sex chromosomes in lymphocyte micronuclei in man[J]. AmJ Hum Genet, 1998, 63(5):1464-1472.
    [31] Vral A, Thierens H, De Ridder L. In vitro micronucleus-centromere assay to detect radiation damage induced by low doses in human lymphocytes[J]. Int J Radiat Biol, 1997, 71(1):61-68.
    [32] Garaj-VrhovacV, Kopjar N, Razem D, et al. Application of the alkaline comet assay in biodosimetry:assessment of in vivo DNA damage in human peripheral leukocytes after a gamma radiation incident[J]. Radiat Prot Dosim, 2002, 98(4):407-416.
    [33] Gajendiran N, Tanaka K, Kumaravel TS, et al. Neutron induced adaptive response studied in go human lymphocytes using the comet assay[J]. J Radiat Res (Tokyo), 2001, 42(1):91-101.
    [34] Lagroye I, Hook GJ, Wettring BA, et al. Measurements of alkalilabile DNA damage and protein-DNA crosslinks after 2450 MHz microwave and low dose gamma irradiation in vitro[J]. Radiat Res,2004, 161(2):201-214.
    [35] Wada S, Khoa TV, Kohayashi Y, et al. Detection of radiation induced apoptosis using the comet assay[J]. J Vet Med Sci, 2003, 65(11):1161-1166.
    [36] van der Schans GP, Timmerman AJ and Bruijnzeel PL. Detection of single strand breaks and base damage in DNA of human white blood cells as a tool for biological dosimetry of exposure to ionizing radiation[J]. Mil Med, 2002, 167(2 suppl):5-7.
    [37] Xing JZ, Lee J, Leadon SA, et al. Imminofluorescence detection of radiation induced DNA base damage[J]. Mil Med, 2002, 167(2 suppl):2-4.
    [38] Blakely WF, Miller AC, Luo L, et al. Nucleic acid molecular biomarkers for diagnostic biodosimetry applications:use of the fluorogenic 5'-nuclense polymerase chain reaction assay[J]. Mil Med,2002, 167(2 suppl):16-19.
    [39] Fornace AJ Jr, Amundson SA, Do KT, et al. Stress-gene induction by low dose gramma irradiation[J]. Mil Med, 2002, 167(2 suppl):13-15.
    [40] Grace MB, Mcleland CB and Blakely WF. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry[J]. Int J Radiat Biol, 2002, 78(11):1011-1021.
    [41] Kubota N, Hayashi J, Inada T, et al. Induction of a particular deletion in mitochondrial DNA by X rays depends onthe inherent radiosensitivity of the cells[J]. Radiat Res, 1997, 148(4):395-398.
    [42] mundson SA, Do KT, Shahab S, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation[J]. Radiat Res, 2000, 154(3):342-346.
    [43] Jen KY and Cheung VG. Transcriptional response of lymphoblastoid cells to ionizing radiation[J]. C enome Res, 2003, 13(9):2092-2100.
    [44] Amundson SA and Bittner M, Meltzer P, et al. Induction of gene expression as a monitor of exposure to ionizing radiation[J]. Radiat Res, 2001, 156(5 Pt2):657-661.
    [45] Amundson SA and Fornace AJ Jr. Gene expression profiles for monitoring radiation exposure[J]. Radiat Prot Dosim, 2001, 97(1):11-16.
    [46] Sherlock G. Analysis of large-scale gene expression data[J]. Brief Bioinform, 2001, 2(4):350-362.
    [47] Amundson SA and Fornace AJ Jr. Monitoring human radiation exposure by gene expression profiling possibilities and pitfalls[J].Health Phys, 2003, 85(1):36-42.
    [48] Saenko AS, Zamulaeva IA, Smirnova SG, et al. Determination of somatic mutant frequencies at glycophorin A and T cell receptor loci for biodosimetry of prolonged irradiation[J]. Int J Radiat Biol, 1998,73(6):613-618.
    [49] Janet Tawn E, Whitehouse CA, Paul Daniel C, et al. Somatic cell mutations at the glycophorin A locus in erythrocytes of radiation workers from the Sellafield nuclear facility[J]. Radiat Res, 2003,159(1):117-122.
    [50] Jones IM, Galick H, Kato P, et al. Three somatic genetic biomarkers and covariates in radiation exposed Russian cleanup workers of the Chernobyl nuclear reactor 6-13 years after exposure[J]. Radiat Res,2002, 158(4):424-442.
    [51] Ha M, Yoo KY, Cho SH. Glycophorin A mutant frequency in radiation workers at the nuclear power plants and a hospital[J]. Mutat Res, 2002, 501(1-2):45-56.
    [52] Jones IM, Tucker JD, Langlois RG, et al. Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident[J]. Radiat Prot Dosim 2001, 97(1):61-67.
    [53] Thomas CB, Nelson DO, Pleshanov P, et al. Induction and decline of HPRT mutants and deletions following a low dose radiation exposure at Chernobyl[J]. Muta Res, 2002, 499(2):177-187.
    [54] Amundson SA, Bittner M, Meltzer P, et al. Biological indicators for the identification of ionizing radiation exposure in humans[J]. Exp Rev Mol Diagn, 2001, 1(2):211-219.
    [55] Voisin P, Barquinero F, Blakely B, et al. Towards a standardization of biological dosimetry by cytogenetics[J]. Cell Mol Biol, (Noisylegrand), 2002, 48(5):501-504.
  • [1] 刘强姜恩海李进唐卫生王知权 . SCGE作为辐射生物剂量计的可行性研究. 国际放射医学核医学杂志, 2005, 29(3): 126-129.
    [2] 马娅李洁清侯殿俊朱建国 . 分子生物学水平的生物剂量学指标研究现状. 国际放射医学核医学杂志, 2018, 42(2): 167-172. doi: 10.3760/cma.j.issn.1673-4114.2018.02.012
    [3] 施常备许建林袁勇陆建荣袁彬赵明刚王翔陈葳邓敬兰 . 染色体畸变率估算32P的辐射剂量. 国际放射医学核医学杂志, 2012, 36(1): 35-37. doi: 10.3760/cma.j.issn.1673-4114.2012.01.009
    [4] 周平坤夏寿萱 . 真核基因损伤修复和基因表达的辐射兴奋效应. 国际放射医学核医学杂志, 1996, 20(5): 223-226.
    [5] 王平关华顺吕玉民 . 外周血核基因表达评价辐射生物剂量方法研究进展. 国际放射医学核医学杂志, 2014, 38(6): 416-420, 432. doi: 10.3760/cma.j.issn.1673-4114.2014.06.016
    [6] 金璀珍张泽云刘秀林 . 染色体畸变分析作为生物剂量估计的研究进展. 国际放射医学核医学杂志, 1997, 21(z1): 229-232.
    [7] 陈振军王知权王继先 . TCR基因突变分析技术及其在辐射生物学中的应用. 国际放射医学核医学杂志, 1995, 19(1): 41-44.
    [8] 牛津梁 . DNA损伤修复能力对GPA基因突变频率的影响及其检测方法. 国际放射医学核医学杂志, 2001, 25(6): 279-282.
    [9] 李进王知权张景源 . 辐射生物剂量计. 国际放射医学核医学杂志, 1995, 19(6): 276-277.
    [10] 徐永忠赵经涌郑斯英夏寿萱 . HPRT基因突变分析技术及其在放射生物学中的应用. 国际放射医学核医学杂志, 1997, 21(3): 138-140.
  • 加载中
计量
  • 文章访问数:  1375
  • HTML全文浏览量:  143
  • PDF下载量:  3
出版历程
  • 收稿日期:  2004-03-28

电离辐射生物剂量研究现状

  • 200433 上海, 第二军医大学放射医学教研室
基金项目:  国家自然科学基金资助项目(30370444)

摘要: 生物剂量计有物理剂量计不可替代的优势,其重要性和科学意义已为世界各国放射生物学家所重视。合理正确使用生物剂量计应建立在对其特性充分了解的基础上。本文简述近年来生物剂量计研究和应用的现状。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回