重组人促甲状腺激素和促再分化药物在分化型甲状腺癌中的应用

孟召伟 谭建

引用本文:
Citation:

重组人促甲状腺激素和促再分化药物在分化型甲状腺癌中的应用

    通讯作者: 孟召伟, james_mencius@eyou.com
  • 中图分类号: R730.54

Application of recombinant human thyrotropin and redifferentiation drugs in differentiated thyroid cancer

    Corresponding author: MENG Zhao-wei, james_mencius@eyou.com ;
  • CLC number: R730.54

  • 摘要: 131Ⅰ去除术后残留甲状腺组织和131I治疗转移灶是分化型甲状腺癌(DTC)联合治疗方案中的重要组成部分。治疗前,最关键的准备是使促甲状腺激素(TSH)升高到适合的水平。重组人促甲状腺激素(rhTSH)可以有效地使血清TSH水平升高,rhTSH与内源TSH有相同的结构和生物活性,应用rhTSH副作用轻微,并可避免因停用甲状腺激素治疗而使患者出现的甲减症状。部分DTC患者的癌灶会发生失分化,造成病情恶化、预后变差,并对131Ⅰ治疗不再敏感。以异维甲酸为代表的促进再分化药物的研究已进入Ⅱ期临床阶段,取得了一定的突破,成为失分化DTC患者131Ⅰ治疗前准备的重要手段。
  • [1] Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab, 2004, 89(1):272-280.
    [2] Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma:a comprehensive review. Endocr Relat Cancer, 2005, 12(1):49-64.
    [3] Jarzab B, Handidewicz-Junak D, Roskosz J, et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma:a single-centre study of 54 patients. Eur J Nucl Mad Mol Imaging, 2003, 30(8):1077-1086.
    [4] Luster M, Lassmann M, Haenscheid H, et al. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab, 2000, 85(10):3640-3645.
    [5] Berg G, Lindstedt G, Suurkula M, et al. Radioiodine ablation and therapy in differentiated thyroid cancer under stimulation with recombinant human thyroid-stimulating hormone. J Endocrinol Invest, 2002, 25(1):44-52.
    [6] de Keizer B, Hoekstra A, Konijnenberg MW, et al. Bone marrow dosimetry and safety of high 131Ⅰ activities given after recom-binant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer. J Nucl Med, 2004, 45(9):1549-1554.
    [7] Gruning T, Tiepolt C, Zophel K, et al. Retinoic acid for redifferentiation of thyroid cancer-does it hold its promise?. Eur J Endocrinol, 2003, 148(4):395-402.
    [8] Zarnegar R, Bmnaud L, Kanauchi H, et al. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using trichostatin A, a histone deacetylase inhibitor.Surgery, 2002, 132(6):984-990.
    [9] Pancini F, Molinaro E, Castagna MG, et al. Ablation of thyroid residues with 30 mCi 131Ⅰ:a comparison in thyroid cancer pa-tients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab, 2002, 87(9):4063-4068.
    [10] Bobbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as preparation for radioiodine thyroid remnant ablation. J Nucl Med, 2002, 43(11):1482-1488.
    [11] Barbaro D, Boni G, Meucci G, et al. Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer, effectiveness for postsurgical remnants ablation and possible role of iodine content in L-thyroxine in the outcome of ablation. J Clin Endocrinol Metsb, 2003, 88(9):4110-4115.
    [12] Lippi F, Capezzone M, Angelini F, et al. Radioiodine treatment of meta static differentiated thyroid cancer in patients on L-thyroxine,using recombinant human TSK Eur J Endocrinol, 2001, 144(1):5-11.
    [13] Pellegriti G, Scollo C, Giuffrida D, et al. Usefulness of recombinant human thyrotropin in the radiometabolic treatment of selected patients with thyroid cancer. Thyroid, 2001, 11(11):1025-1030.
    [14] Kovatcheva RD, Hadjieva TD, Kirilov GG, et al. Recombinant human TSH in radioiodine treatment of differentiated thyroid cancer. Nucl Med Rev Cent East Eur, 2004, 7(1):13-19.
    [15] Haugen BR, Pacini F, Reiners C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab, 1999, 84(11):3877-3885.
    [16] Mazzaferri EL, Massoll N. Management of papillary and follicular(differentiated) thyroid cancer:, new paradigms using recombinant human thyrotropin. Endocr Relat Cancer, 2002, 9(4):227-247.
    [17] Schmutzler C, Hoang-Vu C, Ruger B, et al. Human thyroid carcinoma cell lines show different retinoic acid receptor repertoires and retinoid responses. Eur J Endocrinol, 2004, 150(4):547-556.
    [18] Schmutzler C, Kohrle J. Retinoic acid redifferentialion therapy for thyroid cancer. Thyroid, 2000, 10(5):393-406.
    [19] Dadachova E, Carrasco N. The Na/I symporter (NLS):imaging and therapeutic applications. Semin Nucl Med, 2004, 34(1):23-31.
    [20] Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab, 2000, 85(8):2889-2896.
    [21] Hoang-Vu C, Bull K, Schwarz I, et al. Regulation of CD97 protein in thyroid carcinoma. J Clin Endocrinol Metab, 1999, 84(3):1104-1109.
    [22] Simon D, Korber C, Krausch M, et al. Clinical impact of retinoids in redifferenfiation therapy of advanced thyroid cancer:final results of a pilot study. Eur J Nucl Mad Mol Imaging, 2002, 29(6):775-782.
    [23] Short SC, Suovuori A, Cook G, et al. A phase Ⅱ study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol, 2004, 16(8):569-574.
    [24] Kitazono M, Robey R, Zhan Z, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab, 2001, 86(7):3430-3435.
    [25] Kitazono M, Bates S, Fok P, et al. The histone deacetylese inhibitor FR901228(desipeptide) restores expression and function of pseudo-null p53. Cancer Bid Ther, 2002, 1(6):665-668.
    [26] Imanishi R, Ohtsuru A, Iwamatsu M, et al. A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. J Clin Endocrinol Metab, 2002, 87(10):4821-4824.
  • [1] 李艳玲栾兆生 . 维甲酸在131I治疗分化型甲状腺癌中的应用. 国际放射医学核医学杂志, 2009, 33(4): 226-228. doi: 10.3760/cma.j.issn.1673-4114.2009.04.010
    [2] 叶智轶王辉吴靖川 . 维甲酸在诱导再分化治疗分化型甲状腺癌中的价值. 国际放射医学核医学杂志, 2007, 31(4): 221-225.
    [3] 任均田 . 促甲状腺素实验检测进展. 国际放射医学核医学杂志, 2002, 26(2): 57-60.
    [4] 惠金子赵德善 . Tg、TgAb及TSH在分化型甲状腺癌术前的预测分析. 国际放射医学核医学杂志, 2015, 39(2): 110-115. doi: 10.3760/cma.j.issn.1673-4114.2015.02.002
    [5] 周菱杨玲蔡亮张蜀茂陈跃 . TSH抑制治疗分化型甲状腺癌对骨密度影响的Meta分析. 国际放射医学核医学杂志, 2019, 43(1): 53-60. doi: 10.3760/cma.j.issn.1673-4114.2019.01.010
    [6] 李敬彦蒋宁一 . 分化型甲状腺癌术后131I清甲治疗方法的相关问题. 国际放射医学核医学杂志, 2014, 38(1): 42-47. doi: 10.3760/cma.j.issn.1673-4114.2014.01.009
    [7] 孟召伟谭建 . 美国甲状腺协会和临床内分泌医师协会2012年甲减诊治指南介绍. 国际放射医学核医学杂志, 2013, 37(2): 124-127. doi: 10.3760/cma.j.issn.1673-4114.2013.02.016
    [8] 陆邓露卢彦祺牟兴宇秦洋洋朱卓豪赵守松付巍99TcmO4 核素显像与血清TSH水平对超声检查提示高危甲状腺结节的鉴别诊断价值. 国际放射医学核医学杂志, 2021, 45(3): 147-154. doi: 10.3760/cma.j.cn121381-202008001-00027
    [9] 王玥祺黄蕤李林 . 分化型甲状腺癌术后131I治疗及诊断性显像前提高TSH水平的方案及其影响. 国际放射医学核医学杂志, 2020, 44(1): 59-64. doi: 10.3760/cma.j.issn.1673-4114.2020.01.012
    [10] 郭永铁 . 促甲状腺激素与亚临床性甲状腺功能异常. 国际放射医学核医学杂志, 2008, 32(6): 351-353.
  • 加载中
计量
  • 文章访问数:  1447
  • HTML全文浏览量:  154
  • PDF下载量:  3
出版历程
  • 收稿日期:  2006-05-20

重组人促甲状腺激素和促再分化药物在分化型甲状腺癌中的应用

摘要: 131Ⅰ去除术后残留甲状腺组织和131I治疗转移灶是分化型甲状腺癌(DTC)联合治疗方案中的重要组成部分。治疗前,最关键的准备是使促甲状腺激素(TSH)升高到适合的水平。重组人促甲状腺激素(rhTSH)可以有效地使血清TSH水平升高,rhTSH与内源TSH有相同的结构和生物活性,应用rhTSH副作用轻微,并可避免因停用甲状腺激素治疗而使患者出现的甲减症状。部分DTC患者的癌灶会发生失分化,造成病情恶化、预后变差,并对131Ⅰ治疗不再敏感。以异维甲酸为代表的促进再分化药物的研究已进入Ⅱ期临床阶段,取得了一定的突破,成为失分化DTC患者131Ⅰ治疗前准备的重要手段。

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回