核医学技术在肿瘤治疗中的应用与进展

李小东 张遵城 董华 董萍 赵洪刚 郭永涛

引用本文:
Citation:

核医学技术在肿瘤治疗中的应用与进展

  • 中图分类号: R814.4;R817.5

Development and clinical applications of nuclear medicine on oncology therapy

  • CLC number: R814.4;R817.5

  • 摘要: 核医学功能代谢显像与放射性粒子种植治疗是目前肿瘤治疗研究的前沿问题之一,为肿瘤治疗提供了有力的武器。核医学功能代谢显像较CT能更早地显示肿瘤部位和扩散范围,对肿瘤临床分期、制定手术和放射治疗计划具有重要意义,是常规CT和MRI的有益补充。放射性粒子植入治疗安全且疗效肯定,是肿瘤综合治疗的手段之一。
  • [1] 潘中允,黄祖汉.PET显像的基本原理、特点和现状.潘中允主编.PET诊断学.北京:人民卫生出版社,2005.16.
    [2] 于金明,邢力刚.功能性影像确定肿瘤放射治疗生物靶区的研究进展.中国医学影像学杂志,2004,12(1):53-55.
    [3] 唐正华.PET药物及其研究现状与进展.国外医学·放射医学核医学分册,1999,23(5):193-197.
    [4] Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non small cell lung cancer using positron emission tomography (PET). Radiother Oncol, 2002, 62(1):51-60.
    [5] Mutic S, Malyapa RS, Grigsby PW, et al. PET guided IMRT for cervical carcinoma with positive paraortic lymph nodes a dose escalation treatment planning study. Int J Radiat Oncol Biol Phys,2003, 55(1):28-35.
    [6] Chung JK, Kim YK, Kim SK, et al. Usefulness of 11C-methionine PET in the evalution of brain lesions that are hypoor isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging, 2002, 29(2):176-182.
    [7] Grosu AL, Lachner R, Wienenmann N, et al. Validation of a method for atomatic image fusion (Brainlab system) of CT data and 11C-methionine PET data for stereotactic radiotherapy using a LINAC:first clinical experience. Int J Radiat Oncol Biol Phys,2003, 56(5):1450-1463.
    [8] Been LB, Suurmeijer A J, Cobben DC, et al. 18F-FLT-PET in ontology:current status and opportunities. Eur J Nuel Med Mol Imaging,2004, 31(12):1659-1672.
    [9] Waldherr C, Mellinghoff IK, Tran C, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3'-deoxy-3'-18F-fluorothymidine PET. J Nucl Med, 2005, 46(1):114-120.
    [10] Bianco R, Daniele G, Ciardiello F, et al. Monoclonal antibodies targeting the epidermal growth factor receptor. Curt Drug Targets,2005, 6(:3):275-287.
    [11] Kumar Pals, Pegram M. Epidermal growth factor receptor and signal transduction:potential targets foranticancer therapy. Anticancer Drugs, 2005, 16(5):483-494.
    [12] Rajendran JG, Wilson DC, Conrad EU, et al.[(18)F]FMISO and[(18)F]FDG PET imaging in soft tissue sarcomas:correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging, 2003, 30(5):695-704.
    [13] Alber M, Paulsen F, Eschmann SM, et al. On biologically conformal boost dose optimization. Phys Med Biol, 2003, 48(2):31-35.
    [14] Zhang X, Melo T, Ballinger JR, et al. Studies of 99mTc-BnAO(h1291):A non nitroaromatic compound for hypoxic cell detection.Int J Radiat Oncol Biol Phys, 1998, 42(4):737-740.
    [15] Van De Wiele C, Versijpt J, Dierckx RA, et al. 99Tc (m) labeled HL91 versus computed tomography and biopsy for the visualizationof tumour recurrence of squamous head and neck carcinoma. Nucl Med Commun, 2001, 22(3):269-275.
    [16] Chao KS, Bosch WR, Mutic S, et al. A novel approach to overcome hypoxic tumor resistance:Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys, 2001, 49(4):1171-1182.
    [17] Yang D J, Azhdafinia A, Wu P, et al. In vivo and in vitro measurement of apoptosis in breast cancer cells using 99mTc EC annexin V.Cancer Biother Radiopharm, 2001, 16(1):73-83.
    [18] Prada PJ, Hevia M, Juan G, et al. I-125 low dose rate brachytherapy in localized prostate cancer. Preliminary results after 5 years. Arch Esp Urol, 2005, 58(3):213-226.
    [19] Cosset JM, Haie-Meder C. Brachytherapy for prostate cancer:high dose rate or low-dose rate?. Cancer Radiother, 2005, 9(8):610-619.
    [20] Peretz T, Nori D, Hilaris B, et al. Treatment of primary unresectable carcinoma of the pancreas with I-125 implantation. Int J Radiat Oncol Biol Phys, 1989, 17(5):931-935.
    [21] Murphy MK, Piper RK, Greenwood LR. Evaluation of the new cesium-131 seed for use in low-energy X-ray brachytherapy. Med Phys,2004, 31(6):1529-1538.
    [22] Chen A, Galloway M, Landreneau R, et al. Introperative 125I brachytherapy for highrisk stage I non small cell lung carcinoma.Int J Radait Oncol Biol Phys, 1999,44(5):1057-1063.
    [23] Martinez-Monge R, Garran C, Vivas I. Percutaneous CT-guided 103Pd implantation for the medically inoperable patient with T1N0M0 non-small cell lung cancer, a case report. Brachytherapy,2004, 3(3):179-181.
    [24] Sneed P, Mcdermott MW, Gutin P, et al. Interstitial brachytherapy proce dures for brain tumors. Semin Surg Oncol, 1997, 13(3):157-166.
    [25] Julow J, Viola A, Major T, et al. 125I brachytherapy of pineal parenchymal tumours. Ideggyogy Sz, 2005, 58(7-8):254-262.
  • [1] 杨天恩 . 放射肿瘤学发展史概要. 国际放射医学核医学杂志, 1995, 19(5): 199-203.
    [2] 李祖贵 . 轻度认知障碍的功能性神经影像学研究进展. 国际放射医学核医学杂志, 2006, 30(2): 76-79.
    [3] 杜雪梅张延军 . 核素乏氧显像在肿瘤放射治疗中的应用. 国际放射医学核医学杂志, 2008, 32(2): 96-98.
    [4] 王亚飞孟庆勇 . 放射性核素反义技术在肿瘤治疗中的研究. 国际放射医学核医学杂志, 2006, 30(3): 142-144.
    [5] 张仲良李静喆何玉奇康祺龚飞 . 放射性125I粒子植入联合肝动脉化疗栓塞术治疗中晚期肝癌的临床疗效评价. 国际放射医学核医学杂志, 2022, 46(9): 544-549. doi: 10.3760/cma.j.cn121381-202205004-00217
    [6] 郭永涛张遵城霍小东董华125I放射性粒子植入治疗对不能或不愿手术的早期非小细胞肺癌患者肺功能的影响. 国际放射医学核医学杂志, 2019, 43(3): 230-234. doi: 10.3760/cma.j.issn.1673-4114.2019.03.006
    [7] 赵惠扬 . 放射性核素计算机处理断层摄影术. 国际放射医学核医学杂志, 1979, 3(1): 36-41.
    [8] 陈洪雷张可领 . 脑肿瘤的组织间近距离放射治疗. 国际放射医学核医学杂志, 2004, 28(1): 18-21.
    [9] 侯朝华霍彬宋杨 . 组织间近距离放射性粒子植入治疗肿瘤的进展. 国际放射医学核医学杂志, 2015, 39(4): 348-351. doi: 10.3760/cma.j.issn.1673-4114.2015.04.016
    [10] 马蕊张良安 . 高剂量率近距离放射治疗前列腺癌. 国际放射医学核医学杂志, 2007, 31(3): 191-193.
  • 加载中
计量
  • 文章访问数:  1430
  • HTML全文浏览量:  82
  • PDF下载量:  3
出版历程
  • 收稿日期:  2005-12-12

核医学技术在肿瘤治疗中的应用与进展

  • 300211 天津, 天津医科大学第二医院核医学科

摘要: 核医学功能代谢显像与放射性粒子种植治疗是目前肿瘤治疗研究的前沿问题之一,为肿瘤治疗提供了有力的武器。核医学功能代谢显像较CT能更早地显示肿瘤部位和扩散范围,对肿瘤临床分期、制定手术和放射治疗计划具有重要意义,是常规CT和MRI的有益补充。放射性粒子植入治疗安全且疗效肯定,是肿瘤综合治疗的手段之一。

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回