不摄取131I的甲状腺癌治疗

余永利

引用本文:
Citation:

不摄取131I的甲状腺癌治疗

  • 中图分类号: R730.5

Treatment of non-uptaking 131I thyroid cancer

  • CLC number: R730.5

  • 摘要: 甲状腺癌通常预后较好,但约30%发生肿瘤去分化,最终发展成高度恶性的未分化癌,平均生存率少于8个月。由于有关去分化的甲状腺特异性功能的丧失,这些肿瘤不能接受标准的治疗方法,例如131I治疗和甲状腺激素调节的促甲状腺激素抑制。甲状腺髓样癌也是高侵犯性肿瘤,治疗局限于外科手术,若患者对标准治疗方法不反应则无其他选择。最近,几个新的方法已试用于甲状腺癌的治疗,其中大多数采用基因治疗方法:①肿瘤抑制体p53基因的再引进;②自杀基因治疗;③白细胞介素-2基因表达的抗肿瘤免疫应答;④抗肿瘤标志物降钙素的DNA接种以诱导免疫应答;⑤甲状腺钠碘转运体的转导使不摄碘组织可以接受131I治疗;⑥通过抗敏低聚核苷酸阻断肿瘤基因c-myc的表达;⑦放射性标记抗体的放射免疫靶向治疗;⑧维甲酸再分化治疗;⑨生长激素释放抑制激素。
  • [1] Gomez-Navarro J, Curiel DT, Douglas JT. Gene therapy for cancer[J].Eur J Cancer, 1999, 35(3):867-885.
    [2] Weiner DB, Kennedy RC. Genetic vaccines[J]. Sci Am, 1999, 281(1):50-70,
    [3] Narimatsu M, Nagayama Y, Akino K, et al. Therapeutic usefulness of wild-type p53 gene introduction in a p53-null anaplastic thyroid carcinoma cell line[J]. J Clin Endocrinol Metab, 1998, 83(11):3668-3672.
    [4] Blagosklonny MV, Giannakokou P, Wojtowics M, et al. Effects of p53-expression adenovirus on the ehemosensitivity and differentiationofanaplasticthyroidcancercells[J]. JClin Endocrinol Metab,1998, 83(8):2516-2522.
    [5] Shimura H, Suzuki H, Miyazaki A, et al. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells[J]. Cancer Res, 2001, 61(11):3640-3646.
    [6] Kitazono M, Chuman Y, Aikou T, et al. Adenovirus HSV-TK construct with thyroid-specific promoter:Enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the camp pathway[J]. Iht J Cancer, 2002, 99(2):453-459.
    [7] Zahng R, De Groot IJ. Gene therapy of established medullary thyroid carcinoma with herpes simplex viral thymidine kinase in a rat tumor model:relationship of bystander effect and antitumor efficacy[J]. Thyroid, 2000, 10(1):313-319.
    [8] Zhang R, De Groot IJ. An adenoviral expression functional heterogeneous proteins herpes simplex viral thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against medullary thyroid carcinoma[J]. Endocrinol Relat Cancer, 2001, 8(2):315-325.
    [9] Yamazaki M, Zhang R, Straus FH, et al. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor specific expression of intedeukin-12[J]. Gene Therapy,2002, 9(1):64-74.
    [10] Soler MN, Bobe P, Benihoud K, et al. Gene therapy of rat medullary thyroid cancer by naked nitric o. xide synthase Ⅱ DNA injection[J]. J Gene Med, 2000, 2(2):344-352.
    [11] Zhang R, De Groot LJ. Genetic immunotherapy of established tumors with adenoviral vectors transducing murine interleukin(mIL-12) subunits in a rat medullary thyroid carcinoma model[J]. Clin Endocrinol(Oxf), 2000, 52(3):687-694.
    [12] Zhang R, Straus FH, De Groot LJ. Effective genetic therapy of established medullary thyroid carcinomas with murine interleukin2:dissemination and cytotoxicity studies in a rat tumor model[J].Endocrinology, 1999, 140(7):2152-2158.
    [13] Filletti S, Bidart JM, Arturi R, et al. Sodium/Iodide symporter:a key transport system in thyroid cancer cell metabolism[J]. Eur J Endocrinol, 1999, 141(2):443-457.
    [14] Venkataraman GM, Yatin M, Mareinek R, et al. Restoration of iodine uptake in dedifferentiated thyroid carcinoma relationship to human Na+/I- symporter gene methylation status[J]. J Clin Endocrinol and Metab, 1999, 84(8):2449-2460.
    [15] Haupt K, Siegel F, Lu M, et al. Induction of a cellular and humoral immune response against the tumor associated antigen calcitolin by geneticimmunization[J]. J Endocrinol Investig, 1999, 22(supple):4.
    [16] Juweid ME, Hajjar G, Swayne LC, et al. Phase Ⅰ/Ⅱ trial of 131I-MN14F (ab)2 anticarcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma[J].Cancer, 1999, 85(6):1828-1842.
    [17] Simon D, Kohrle J, Reiners C, et al. Redifferentiation therapy with retinoids-a therapeutic option in advanced follicular and papillary thyroid carcinoma[J]. World J Surg, 1998, 22(2):569-574.
    [18] Simon D, Kohrle J, Reiners C, et al. Redifferentiation therapy in thyroid cancer-results of a multicenter pilot study[J]. Thyroid, 1998,8(4):1217.
    [19] Schmutaler C, Koehrle J. Innovative strategies for the treatment of thyroid cancer[J]. Eur J Endocrinol, 2000, 143(1):15-24.
    [20] Signore A, Annovazzi A, Chianelli M, et al. Peptide radio-pharmaceuticals for diagnosis and therapy[J]. Eur J Nucl Med, 2001, 28(5):1555-1556.
    [21] Oberg K. Established clinical use of octreotide and lanreotide in oncology[J]. Chemotherapy, 2001, 47(1):47-63.
    [22] Weiner RE, Thakur ML. Radilabaled peptides in the diagnosis and therapy of oncological disease[J]. Appl Radiat Isot, 2002, 57(2):749-763.
    [23] Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging[J].Semin Nucl Med, 2002, 32(1):84-91.
    [24] Lamberts SWL, de Herder WW, Hofland LJ. Somatostatin analogs in the diagnosis and treatment of cancer[J]. Trends Endocrinol Metab,2002, 13(2):451-502.
    [25] Papotti M, Kumar U,Volante M, et al. Immunohistochemical detection of somatostatin types 1-5 in medullary carcinoma of the thyroid[J]. Clin Endocrinol, 2001, 54(2):641-649.
    [26] Slooter GD, Mearadji A,Breeman WAP, et al. Somatostatin receptor imaging, therapy and new strategies in patients with neuroendocrine tumors[J]. Br J Surg, 2003, 88(1):31-40.
    [27] Boerman OC, Oyen WJG, Corstens FHM. Radio-labeled receptor binding peptides:a new class of radiopharmaceutical[J]. Semin Nucl Med, 2001, 30(1):195-208.
    [28] Kwekkeboom DJ, Krenning EP, de Jong M. Peptide receptor imaging and therapy[J]. J Nucl Med, 2002, 41(6):1704-1713.
    [29] Bugal JE, Erion JL, Johnson MA, et al. Radiothapeutical efficacy of 153-Sm-CMDTPA-Tyr3-octreotide in tumor-bearing rats[J]. Nucl Med Biol, 2001, 28(1):327-334.
    [30] Bohuslavizki KH. Somatostatin receptor imaging:current status and future perspectives[J]. J Nucl Med, 2003, 42(3):1057-1058.
  • [1] 易艳玲卓维海131I治疗甲状腺肿瘤患者出院剂量指导水平分析. 国际放射医学核医学杂志, 2008, 32(6): 372-375.
    [2] 郭睿李彪 . 钠碘同向转运体基因介导放射性碘治疗肿瘤的研究进展. 国际放射医学核医学杂志, 2010, 34(3): 147-151. doi: 10.3760/cma.j.issn.1673-4114.2010.03.005
    [3] 刘建宇朱宗平石德道郑飞波 . 放射性碘难治性分化型甲状腺癌去分化分子机制及再分化治疗的分子靶向药物. 国际放射医学核医学杂志, 2023, 47(2): 123-126. doi: 10.3760/cma.j.cn121381-202205003-00267
    [4] 夏劲松 . 放射技术与基因治疗. 国际放射医学核医学杂志, 2001, 25(3): 138-141.
    [5] 张一帆李彪 . 钠/碘同向转运体在甲状腺癌131I治疗中的应用. 国际放射医学核医学杂志, 2004, 28(6): 249-252.
    [6] 岳园芳刘建井尹国涛戴东徐文贵 . DTC患者131I治疗后左甲状腺素钠片最佳初始剂量预测模型探究. 国际放射医学核医学杂志, 2022, 46(4): 197-202. doi: 10.3760/cma.j.cn121381-202111005-00171
    [7] 陈志军谭丽玲王文俊周爱清131I联合125I粒子治疗难治性甲状腺癌骨转移一例. 国际放射医学核医学杂志, 2017, 41(1): 76-78. doi: 10.3760/cma.j.issn.1673-4114.2017.01.015
    [8] 程刚 . 甲状腺癌的基因治疗. 国际放射医学核医学杂志, 2002, 26(6): 253-256.
    [9] 郑薇谭建 . 甲状腺癌的基因治疗. 国际放射医学核医学杂志, 2007, 31(4): 197-201.
    [10] 穆传杰 . 肿瘤基因治疗中的基因显像. 国际放射医学核医学杂志, 1999, 23(3): 128-131.
  • 加载中
计量
  • 文章访问数:  1164
  • HTML全文浏览量:  186
  • PDF下载量:  3
出版历程
  • 收稿日期:  2005-02-01

不摄取131I的甲状腺癌治疗

  • 200233 上海, 上海交通大学附属第六人民医院核医学科

摘要: 甲状腺癌通常预后较好,但约30%发生肿瘤去分化,最终发展成高度恶性的未分化癌,平均生存率少于8个月。由于有关去分化的甲状腺特异性功能的丧失,这些肿瘤不能接受标准的治疗方法,例如131I治疗和甲状腺激素调节的促甲状腺激素抑制。甲状腺髓样癌也是高侵犯性肿瘤,治疗局限于外科手术,若患者对标准治疗方法不反应则无其他选择。最近,几个新的方法已试用于甲状腺癌的治疗,其中大多数采用基因治疗方法:①肿瘤抑制体p53基因的再引进;②自杀基因治疗;③白细胞介素-2基因表达的抗肿瘤免疫应答;④抗肿瘤标志物降钙素的DNA接种以诱导免疫应答;⑤甲状腺钠碘转运体的转导使不摄碘组织可以接受131I治疗;⑥通过抗敏低聚核苷酸阻断肿瘤基因c-myc的表达;⑦放射性标记抗体的放射免疫靶向治疗;⑧维甲酸再分化治疗;⑨生长激素释放抑制激素。

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回