冠状动脉腔内近距离放疗的剂量点核函数算法

徐志勇

引用本文:
Citation:

冠状动脉腔内近距离放疗的剂量点核函数算法

    作者简介: 徐志勇(1970-),男,浙江奉化人,博士研究生,主要从事冠状动脉狭窄放射治疗的剂量学研究。;
  • 基金项目:

    国家自然科学基金资助项目(3070233)

  • 中图分类号: R817.5;R144.1

Dose point -kernel computational methods in brachytherapy following coronary angioplasty

  • CLC number: R817.5;R144.1

  • 摘要: 近年的基础和临床研究表明,在冠状动脉血管成形术中和术后用15~30Gy剂量的腔内近距离照射能使再狭窄发生率降低。剂量点核函数的解析方法被用来计算冠状动脉及其周围组织的剂量分布。本文总结了近年来文献发表的主要剂量点核函数算法。
  • [1] Nath R,Amols H,Coffey C. Intravascular brachytherapy physics:report of the AAPM Radiation Therapy Committee Task Group No.60.American Association of Physicists in Medicine[J].Medical Physics,1999,(02):119-152.
    [2] Waksman R. Radiation for prevention of restenosis:where are we?[J].International Journal of Radiation Oncology,Biology,Physics,1996.959-961.
    [3] Booch WE,Bouchet LG,Robertson JS. MIRD pamphlet No.17:The dosimetry of nonuniform activity distribution-radionuclide S values at voxel level[J].Journal of Nuclear Medicine,1999.11S-26S.
    [4] Cross WG,Freedman NO,Wong PY. Beta-ray dose distributions from point sources in an infinite water medium[J].Health Physics,1992.160-171.
    [5] Bohm TD,Mourtada FA,Das RK. Dose rate table for a 32P intravascular brachytherapy source from Monte Carlo calculations[J].Medical Physics,2001,(28):1770-1775.
    [6] Wang RQ,Li XA. Monte Carlo characterization of a 32P source for intravascular brachytherapy[J].Medical Physics,2001,(28):1776:1785.
    [7] Leichner PK,Kwok CS. Tumor dosimetry in radioimmunotherapy[J].Medical Physics,1993.529-534.
    [8] Bardist M,Myest MJ. Computational method in radionuclide dosimetry[J].Physics in Medicine and Biology,1996,(10):1941-1950.
    [9] Berger MJ. Energy disposition in water by photons from point isotropic sources,MIRD pamphlet No.2[M].New York: Society of Nuclear Medicine,1968.17-25.
    [10] Leichner PK. A unified approach to photon and beta Particle dosimetry[J].Journal of Nuclear Medicine,1994.1721-1729.
    [11] Furhang EE,Sgouros G,Chui CS. Radionuclide photon dose kernel for internal emitter dosimetry[J].Medical Physics,1996.759-764.
    [12] Amols HI,Zaider M,Weinberger J. Dosimetric consideration for cathter-based and gamma emitters in the therapy of neointimal hyperplasia in human coronary arteries[J].International Journal of Radiation Oncology,Biology,Physics,1996.913-921.
    [13] Nath R,Anderson L,Luxton G. Dosimetry of interstitial brachytherapy sources:recommendations of the AAPM radiation therapy committee task group No.43[J].Medical Physics,1995.209-234.
    [14] Loevinger R,Japha EM,Brownell GL. Radiation Dosimetry[M].New York:Academic Press,1956.693-799.
    [15] Vynckier S,A wamberie. Dosimetry of beta sources in radiotherapy Ⅰ.:The beta point source dose function[J].Physics in Medicine and Biology,1982.1339-1347.
    [16] Cheuk SK. Calculation of radiation doses for nonuniformly distributed beta and gamma radionuclides in soft tissue[J].Medical Physics,1985.405-411.
    [17] Xu ZG,Almond PR,Deasy JO. The dose distribution produced by a 32P source for endovascular irradiation[J].International Journal of Radiation Oncology,Biology,Physics,1996,(36):933-939.
    [18] Cross WG. Empirical expressions for beta ray point source dose distributions[J].Radiation Protection Dosimetry,1997,(02):85-96.
    [19] Prestwich WV,Nunes J,Kwok CS. Beta dose point kernels for radionuclides of potential use in radioimmunotherapy[J].Journal of Nuclear Medicine,1989.1036-1046.
    [20] Simpkin DJ,Mackie TR. EGS4 Monte Carlo determination of the beta dose kernel in water[J].Medical Physics,1990.179-186.
    [21] Duggan D,Coffey C,Levit S. Point dose kernel for pure beta-emitting intracornary brachytherapy stents thoeretical models versus experimental methods using radiochromic dosimetry[J].International Journal of Radiation Oncology,Biology,Physics,1998.713-720.
    [22] Janicki C,Duggan DM,Coffey WC. Radiation dose from a phosphorous-32 impregnated wire mesh vascular stent[J].Medical Physics,1997.437-445.
    [23] Janicki C,Fishell DR,Krumme K. Application of the DPK model to predict the dose field around a 32P advanced stent design[J].Medical Physics,1997,(24):994.
    [24] Whiting JS,Li AN,Eigler N. 3-D dose distribution for stents,liquid balloons and 90Y seeds using dose-volume histograms[J].Medical Physics,1997,(24):995.
    [25] Amols HI,Reinstein LE,Weinberger J. Dosimetry of a radioactive coronary balloon dilatation catheter for treatment of neointimal hyperplasia[J].Medical Physics,1996.1783-1788.
  • [1] 王俊杰申文江贾廷珍 . 放射性支架对血管成形术后再狭窄的预防作用. 国际放射医学核医学杂志, 1999, 23(6): 260-262.
    [2] 王任飞谭建 . 血管腔内近距离照射预防介入治疗后再狭窄的研究现状. 国际放射医学核医学杂志, 2001, 25(4): 153-157.
    [3] 陈建伟 . 放射性核素近距离治疗血管再狭窄的现状和进展. 国际放射医学核医学杂志, 2002, 26(3): 97-100.
    [4] 张金山蒋宁一 . 放射性血管内支架——防治冠状动脉再狭窄. 国际放射医学核医学杂志, 1999, 23(4): 162-164.
    [5] 刘宏莉 . 核素内照射防治血管成形术后再狭窄. 国际放射医学核医学杂志, 2001, 25(1): 38-41.
    [6] 苏新辉王荣福刘秀杰 . 核素内照射治疗在血管成型术后预防再狭窄的研究进展. 国际放射医学核医学杂志, 1999, 23(4): 164-166.
    [7] 谭文庆 . 冠状动脉内放射治疗再狭窄的研究近况. 国际放射医学核医学杂志, 2003, 27(4): 145-147.
    [8] 马蕊张良安 . 高剂量率近距离放射治疗前列腺癌. 国际放射医学核医学杂志, 2007, 31(3): 191-193.
    [9] 张可领魏怡 . 腔内近距离放射治疗食管癌的特点和作用. 国际放射医学核医学杂志, 2003, 27(2): 62-65.
    [10] 王卫东 . 血管内照射防治血管成形术后再狭窄. 国际放射医学核医学杂志, 2002, 26(4): 152-155.
  • 加载中
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  197
  • PDF下载量:  3
出版历程
  • 收稿日期:  2002-12-27

冠状动脉腔内近距离放疗的剂量点核函数算法

    作者简介:徐志勇(1970-),男,浙江奉化人,博士研究生,主要从事冠状动脉狭窄放射治疗的剂量学研究。
  • 300192 天津, 中国医学科学院中国协和医科大学放射医学研究所
基金项目:  国家自然科学基金资助项目(3070233)

摘要: 近年的基础和临床研究表明,在冠状动脉血管成形术中和术后用15~30Gy剂量的腔内近距离照射能使再狭窄发生率降低。剂量点核函数的解析方法被用来计算冠状动脉及其周围组织的剂量分布。本文总结了近年来文献发表的主要剂量点核函数算法。

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回