动物PET研究进展

柳卫

引用本文:
Citation:

动物PET研究进展

    作者简介: 柳卫(197l-),男,江苏南京人,南京医科大学第一附属医院讲师,复旦大学医学院研究生,主要从事甲状腺疾病研究。;
  • 基金项目:

    江苏省科技厅"国际合作项目"资助(BZ2001055)

  • 中图分类号: R817.4

Progress on dedicated animal PET

  • CLC number: R817.4

  • 摘要: 分子医学研究需要在活体实验动物上观察分子水平的生物学过程,因而正电子发射体层(PET)显像作为目前最成熟的分子显像方法,正被越来越多地用于动物实验。新开发的实验动物专用PET扫描仪的各项性能也逐步趋于完善。该技术将在疾病研究、新药开发、基因治疗等领域发挥重要作用。
  • [1] Chidley E. Molecular Imaging:radiology's next front[J].Radiol Today,2001,2:11-13.
    [2] Phelps ME. Positron emission tomography provides molecular imaging of biological processes[J].Proc Natl Acad Sci USA,2000,97:9226-9233.
    [3] Gambhir SS,Herschman HR,Cherry FR,et al. Imaging transgene expression with radionuclide imaging technologies[J].Neoplasia,2000,2:118-136.
    [4] Jaszaak RJ,Li J,Wang H,et al. Pinhole Collimator for ultra-high resolution,small field of view SPECT[J].Phy Med Biol,1994,39:425-437.
    [5] Ishizu K,Mukai T,Yonekura Y,et al. Ultra-high resolution SPECT system using four pinhole collimator for small animal studies[J].J Nucl Med,1995,36:2282-2287.
    [6] Kastiss GK,Barber HB,Barett HH,et al. High resolution SPECT imager for three-dimentional imaging of small animals[J].J Nucl Med,1998,39:9p.
    [7] Green LA,Gambhir S,Srinivasan A,et al. Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose[J].J Nucl Med,1998,39:729-734.
    [8] Hichwa R. Are animal scanners relly necessary for PET?[J].J Nucl Med,1994,35:1396-1397.
    [9] Bloomfield PM,Rajeswaran S,Spinks TJ,et al. The design and physical characteristics of a small animal positron emission tomograph[J].Phy Med Biol,1995,40:1105-1126.
    [10] Marriott CJ,Cadorette JE,Lecomte R,et al. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors[J].J Nucl Med,1994,35:1390-1396.
    [11] Weber S,Terstegge A,Herzog H,et al. The design of an animal PET:flexible geometry for achieving optimal spatial resolution or high sensitivity[J].IEEE Trans Med Imaging,1997,16:684-689.
    [12] Cherry SR,Shao Y,Silverman RW,et al. MicroPET:A high resolution PET scanner for imaging small animals[J].IEEE Trans Nucl Sci,1997,44:1161-1166.
    [13] Ziegler SI,Pichler BJ,Boening G,et al. A prototype highresolution animal positron tomograph with avalanche photodiode arrays and LSO crystals[J].Eur J Nucl Med,2001,28:136-143.
    [14] Jeavons AP,Chandler RA,Dettmar CA,et al. A fully 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals[J].IEEE Trans Nucl Sci,1999,46:468-473.
    [15] Cherry SR,Gambhir SS. Use of positron emission tomography in animal research[J].ILAR J,2001,42:219-232.
    [16] Chatziioannou A,Tai YC. Detector development for micro PET Ⅱ:a 1 microl resolution PET scanner for small animal imaging[J].Phy Med Biol,2001,46:2899-2910.
    [17] Moore AH,Hovda DA,Cherry SR,et al. Dynamic changes in cerebral glucose metabolism in conscious infant monkeys during the first year of life as measured by positron emission tomography[J].Dev Brain Res,2000,120:141-150.
    [18] Moore AH,Osteen CL,Chatziioannou AF, et al. Quantitative assessment of longitudinal metabolic changes in vivo following traumatic brain injury in the adult rat using FDG-microPET[J].J Cereb Blood Flow Metab,2000,20:1492-1501.
    [19] Kornblum HI,Araujo DM,Annala AJ,et al. In vivo imaging of neuronal activation and plasticity in the rat brain with microPET,a novel high-resolution positron emission tomography[J].Nat Biotechnology,2000,18:655-660.
    [20] Kudo T,Annala AJ,Cherry SR, et al. Noninvasive measurement of F-18 deoxyglucose concentrations in rat myocardium with UCLA microPET[J].J Nucl Med,1999,40:183P.
    [21] Lapointe D,Bentourkia M,Cadorette J, et al. High-resolution cardiac PET in rats[J].J Nucl Med,1999,40:185P.
    [22] Kudo T,Annala AJ,Cherry SR, et al. Measurement of myocardial blood flow during occlusion/reperfusion in rats with dynamic microPET imaging[J].J Nucl Med,1999,40:6P.
    [23] Lapointe D,Brasseur N,Cadorette J, et al. High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice[J].J Nucl Med,1999,40:876-882.
    [24] Tsukada H,Kreuter J,Maggos CE, et al. Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain:An in vivo study using positron emission tomography[J].J of Neuroscience,1996,16:7670-7677.
    [25] Melega WP,Raleigh MJ,Stout DB, et al. Recovery of striatal dopamine function after acute amphetamine-and methamphetamine-induced neurotoxicity in the vervet monkey[J].Brain Res,1997,766:113-120.
    [26] Brownell AL,Livni E,Galpern W, et al. In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants[J].Annals of Neurology,1998:,43:387-390.
    [27] Melega WP,Lacan G,Desalles AA, et al. Long-term methamphetamine-induced decreases of[(11):C] WIN 35,428 binding in striatum are reduced by GDNF:PET studies in the vervet monkey[J].Synapse,2000,35:243-249.
    [28] Urbain JLC. Reporter gene and imaging[J].J Nucl Med,2001,42:106-109.
    [29] Wu AM,Yazaki PJ,Tsai S, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment[J].Proc Natl Acad Sci USA,2000,97:8495-8500.
    [30] Myers R,Hume S,Bloomfield P, et al. Radio-imaging in small animals[J].J of Psychopharmacology,1999,13:352-357.
    [31] Tsukada H,Harada N,Nishiyama S, et al. Dose-response and duration effects of acute administrations of cocaine and GBR12909 on dopamine synthesis and transporter in the conscious monkey brain:PET studies combined with microdialysis[J].Brain Res,2000,860:141-148.
  • [1] 李新平王燕卢国李艳静于雪侯文彬刘昌孝 . PET分子显像技术在药代动力学研究中的应用. 国际放射医学核医学杂志, 2019, 43(4): 349-355. doi: 10.3760/cma.j.issn.1673-4114.2019.04.009
    [2] 廖思锶赵晋华 . 非18F-FDG PET分子显像在淋巴瘤中的应用进展. 国际放射医学核医学杂志, 2024, 48(): 1-6. doi: 10.3760/cma.j.cn121381-202308029-00399
    [3] 李军刘兴党 . 分子显像在糖尿病及其并发症中的应用研究进展. 国际放射医学核医学杂志, 2022, 46(3): 174-179. doi: 10.3760/cma.j.cn121381-202007026-00159
    [4] 袁志斌 . 正电子肿瘤阳性显像剂18F-AMT. 国际放射医学核医学杂志, 2002, 26(5): 193-195.
    [5] 张凯秀王雪梅赵建民 . 放射性核素显像探针在细胞凋亡中的研究进展. 国际放射医学核医学杂志, 2018, 42(6): 559-564, 576. doi: 10.3760/cma.j.issn.1673-4114.2018.06.015
    [6] 杨玲黄琦胡显文王攀 . 核素标记的生长抑素受体拮抗剂在神经内分泌肿瘤显像和治疗中的研究进展. 国际放射医学核医学杂志, 2022, 46(5): 309-315. doi: 10.3760/cma.j.cn121381-202105016-00175
    [7] 陈贵兵欧阳忠韩成坤黄劲雄何小江王凡贾兵吴华99Tcm-3PRGD2整合素受体显像在乳腺癌定性诊断中的价值及与钼靶检查的对比研究. 国际放射医学核医学杂志, 2017, 41(1): 1-7. doi: 10.3760/cma.j.issn.1673-4114.2017.01.001
    [8] 李丽赵长久田国梅 . CXC型趋化因子受体4及其分子显像剂在肿瘤方面的研究进展. 国际放射医学核医学杂志, 2014, 38(3): 190-196. doi: 10.3760/cma.j.issn.1673-4114.2014.03.012
    [9] 陈永辉李方 . 双探头符合线路18F-FDG显像在肺癌诊断中的作用. 国际放射医学核医学杂志, 2002, 26(6): 260-262,267.
    [10] 袁志斌 . PET显像在内分泌肿瘤中的应用. 国际放射医学核医学杂志, 2003, 27(5): 208-211.
    [11] 张军11C-flumazenil受体显像在缺血半暗带研究中的进展. 国际放射医学核医学杂志, 2004, 28(6): 246-249.
  • 加载中
计量
  • 文章访问数:  1095
  • HTML全文浏览量:  107
  • PDF下载量:  3
出版历程
  • 收稿日期:  2002-02-05

动物PET研究进展

    作者简介:柳卫(197l-),男,江苏南京人,南京医科大学第一附属医院讲师,复旦大学医学院研究生,主要从事甲状腺疾病研究。
  • 214063 江苏无锡, 核医学国家重点实验室
基金项目:  江苏省科技厅"国际合作项目"资助(BZ2001055)

摘要: 分子医学研究需要在活体实验动物上观察分子水平的生物学过程,因而正电子发射体层(PET)显像作为目前最成熟的分子显像方法,正被越来越多地用于动物实验。新开发的实验动物专用PET扫描仪的各项性能也逐步趋于完善。该技术将在疾病研究、新药开发、基因治疗等领域发挥重要作用。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回