前列腺癌放射治疗进展

熊正平 张阳德 黄芳 梁赵玉 杨树仁

引用本文:
Citation:

前列腺癌放射治疗进展

    通讯作者: 熊正平, xiongzhengping126@126.com
  • 中图分类号: R730.55

Advances in radiation therapy for prostate cancer

    Corresponding author: XIONG Zheng-ping, xiongzhengping126@126.com ;
  • CLC number: R730.55

  • 摘要: 现代计算机技术推动医学影像技术高速发展,高水平的图像技术又推动放射治疗计划系统进入到更复杂、更高水平。放射治疗计划的设计由原来的二维图像和人工计算发展到了X射线图像和复杂的计算机运算。在治疗过程中,由于肿瘤代谢、抗原的差别,已经考虑到其与正常组织不同的生物学变量,使执行治疗计划时更加精确,如摆位误差、器官运动等已被全面系统地考虑,故又称四维放射治疗。
  • [1] Barker JL Jr, Garden AS, Ang KK, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head and neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys, 2004, 59(4):960-970.
    [2] Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2006, 64(2):355-362.
    [3] Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys,2005, 61(2):238-241.
    [4] Jani AB, Parikth SD, Vijayakumar S, et al. Analysis of influence of age on acute and chronic radiotherapy toxicity in treatment of prostate cancer. Urology, 2005, 65(6):1157-1162.
    [5] Kupelian PA, Potters aL, Khuntia D, et al. Radical prostatectomy,external beam radiotherapy <72GY, external beam radiotherapy 72GY, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys, 2004, 58(1):25-33.
    [6] Michalski JM, Winter K, Purdy JA, et al. Toxicity after three-dimensional radiotherapy for prostate cancer with RTOG 9406 dose level Ⅳ. Int J Radiat Oncol Biol Phys, 2005, 62(3):706-713.
    [7] Zelefsky MJ, Fuks Z, Hunt M, et al. High-dose intensity modulated radiation therapy for prostate cancer, early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys, 2002, 53(5):1111-1116.
    [8] Ashman JB, Zelefsky MJ, Hunt MS, et al. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys, 2005, 63(3):765-771.
    [9] Jani AB, Blend MJ, Hamilton R, et al. Radioimmunoscintigraphy for postprostatectomy radiotherapy:analysis of toxicity and biochemical control. J Nucl Med, 2004, 45(8):1315-1322.
    [10] Schettino CJ, Kramer EL, Noz ME, et al. Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AIR, 2004,183(2):519-524.
    [11] Jackson AS, Parker CC, Norman AR, et al, Tumor staging using magnetic resonance imaging in clinically localized prostate cancer:relationship to biochemical outcome after neo-adjuvant androgen deprivation and radical radiotherapy. Clin Oncol (R Coll Radiol),2005, 17(3):167-171.
    [12] Pickett B, Ten Haken RK, Kurhanewicz J, et al. Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radit Oncol Biol Phys,2004, 59(3):665-673.
    [13] Ganswindt U, Paulsen F, Anastasiadis AG, et al. 70 Gy or more:which dose for which prostate cancer?. J Cancer Res Clin Oncol,2005, 131(7):407-419.
    [14] Langen KM, Pouliot J, Anezinos C, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys, 2003, 57(3):635-644.
    [15] Pouliot J, Aubin M, Langen KM, et al. (Non)-migration of radiopaque markers used for on-line localization of the prostate with an electronic.portal imaging device. Int J Radiat Oncol Biol Phys,2003, 56(3):862-866.
    [16] Niehoff P, Loch T, Numberg N, et al. Feasibility and preliminary outcome of salvage combined HDR braehytherapy and external beam radiotherapy (EBRT) for local recurrences after radical prostatectomy. Braehytherapy, 2005, 4(2):141-145.
    [17] Michalski JM, Winter K, Purdy JA, et al. Preliminary evaluation of low-grade toxicity with conformal radiation therapy for prostate cancer on RTOG 9406 dose levels Ⅰ and Ⅱ. Int J Radiat Oncol Biol Phys, 2003, 56(1):192-198.
  • [1] 谷振勇程超左长京 . 前列腺特异性膜抗原PET/MR 在前列腺癌诊断中的研究进展. 国际放射医学核医学杂志, 2023, 47(1): 33-38. doi: 10.3760/cma.j.cn121381-202204010-00261
    [2] 刘辰杨悦张雪宁李小东 . CT/MRI图像融合在前列腺癌IMRT中的应用进展. 国际放射医学核医学杂志, 2014, 38(4): 247-251. doi: 10.3760/cma.j.issn.1673-4114.2014.04.010
    [3] 廖光星冷志欣肖国有 . 前列腺癌骨转移影像诊断方法研究进展. 国际放射医学核医学杂志, 2016, 40(6): 464-468. doi: 10.3760/cma.j.issn.1673-4114.2016.06.012
    [4] 彭静韩星敏 . 前列腺癌的影像学诊断方法及PET/CT显像剂应用进展. 国际放射医学核医学杂志, 2021, 45(11): 715-720. doi: 10.3760/cma.j.cn121381-202011016-00109
    [5] 张旺刘肖杨海芳田龙胡逸民 . 基于MRI的前列腺癌放疗中标志物手动辨识与定位评价. 国际放射医学核医学杂志, 2022, 46(12): 724-729. doi: 10.3760/cma.j.cn121381-202111003-00241
    [6] 李晓旭杨光杰张琦夏连爽王振光 . 多参数MRI特征和临床因素与前列腺癌术后生化复发风险的相关性分析. 国际放射医学核医学杂志, 2022, 46(11): 649-654. doi: 10.3760/cma.j.cn121381-202112008-00240
    [7] 刘辰杨悦张雪宁李小东 . MRI和1997年版Partin表对前列腺癌病理特征预测准确性的对比研究. 国际放射医学核医学杂志, 2015, 39(2): 124-128. doi: 10.3760/cma.j.issn.1673-4114.2015.02.005
    [8] 刘健萍贺小红金亚彬林胜强高明勇李斌 . 超高b值弥散加权联合T2加权序列诊断外周带前列腺癌的价值. 国际放射医学核医学杂志, 2020, 44(5): 303-308. doi: 10.3760/cma.j.cn121381-201910023-00036
    [9] 夏标吴海璐张天富李雪娜 . 多参数磁共振成像在前列腺癌中的应用进展. 国际放射医学核医学杂志, 2022, 46(1): 58-63. doi: 10.3760/cma.j.cn121381-202012025-00138
    [10] 张龙敏刘爱连 . 前列腺癌MRI诊断技术研究进展. 国际放射医学核医学杂志, 2014, 38(1): 53-58. doi: 10.3760/cma.j.issn.1673-4114.2014.01.011
  • 加载中
计量
  • 文章访问数:  1463
  • HTML全文浏览量:  103
  • PDF下载量:  2
出版历程
  • 收稿日期:  2006-03-27

前列腺癌放射治疗进展

    通讯作者: 熊正平, xiongzhengping126@126.com
  • 1. 410013 长沙, 湖南省肿瘤医院放射科;
  • 2. 410008 长沙, 卫生部肝胆肠外科研究中心;
  • 3. 410013 长沙, 中南大学湘雅三医院感染科;
  • 4. 410013 长沙, 湖南省肿瘤医院放射科

摘要: 现代计算机技术推动医学影像技术高速发展,高水平的图像技术又推动放射治疗计划系统进入到更复杂、更高水平。放射治疗计划的设计由原来的二维图像和人工计算发展到了X射线图像和复杂的计算机运算。在治疗过程中,由于肿瘤代谢、抗原的差别,已经考虑到其与正常组织不同的生物学变量,使执行治疗计划时更加精确,如摆位误差、器官运动等已被全面系统地考虑,故又称四维放射治疗。

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回