动态成像技术及其在精确放疗中的应用

杨克柽 孙卫国 林意群

引用本文:
Citation:

动态成像技术及其在精确放疗中的应用

  • 中图分类号: R814.42

Dynamic imaging technique and its application in precise simulation of radiotherapy

  • CLC number: R814.42

  • 摘要: 放射治疗的发展与现代医学影像技术密不可分,CT成像的空间分辨力和时间分辨力的提高使得动态CT日益成为临床应用的有效手段。在放疗模拟定位的应用中,采用呼吸门控技术得到呼吸周期中不同相位的三维图像,可掌握肿瘤目标随呼吸的运动变化规律,从而建立精确的数学模型,对改进治疗计划具有重要意义。此外,在直线加速器上嵌入两正交的X射线成像系统,以实时跟踪肿瘤目标的位置,也是四维放疗研究的一个方向。
  • [1] Ichikawal T, Kumazaki T. 4D-CT:A new development in three-dimensional hepatic computed tomography[J]. J Nippon Med Sch,2000, 67(1):24-27.
    [2] Kachelriess M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart[J]. Med Phys, 1998, 25(12):2417-2431.
    [3] Saito K, Saito M, Komatu S, et al. Real-time four-dimensional imaging of the heart with multi-detector row CT[J]. Radiographics, 2003,23(1):e8.
    [4] Endo M, Tsunoo T, Kandatsu S, et al. Four-dimensional computed tomography (4D CT)-concepts and preliminary development[J]. Radiat Med, 2003, 21(1):17-22.
    [5] Taguchi K. Temporal resolution and the evaluation of candidate algorithms for four-dimensional CT[J]. Med Phys, 2003, 30(4):640-650.
    [6] George R, Vedam PJ, Siebers JV, et al. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery[J]. Med Phys, 2003, 30(4):552-562.
    [7] Vedam SS, Kini VR, Keal PJ, et al. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker[J]. Med Phys, 2003, 30(4):505-513.
    [8] Berbeco RI, Jiang SB, Sharp GC, et al. Integrated radiotherapy imaging system (IRIS):design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors[J]. Phys Med Biol, 2004, 49(2):243-255.
    [9] Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor[J]. Int J Radiat Oncol Biol Phys, 2000, 48(2):435-442.
    [10] Sharp CC, Jiang SB, Shinmizu S, et al. Prediction of respiratory tumor motion for real-time image-guided radiotherapy[J]. Phys Med Biol,2004, 49(3):425-440.
    [11] Brock KM, Balter JM, Dawson LA, et al. Automated generation of a four-dimensional model of the liver using warping and mutual information[J]. Med Phys, 2003, 30(6):1128-1133.
    [12] Brock KK, McShan DL, Haken RKT. Inclusion of organ deformation in dose calculation[J]. Med Phys, 2003, 30(3):290-295.
    [13] Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing[J]. Med Phys, 2003, 30(6):1254-1263.
    [14] Onishi H, Kuriyama K, Komiyama T, et al. CT evaluation of patient deep inspiration self-breath-holding:How precisely can patient reproduce the tumor position in the absence of respiratory monitoring devices?[J]. Med Phys, 2003, 30(6):1183-1187.
    [15] Ford EC, Magnras GS, Yorke E, et al. Respiration-correlated spiral CT:A method of measuring respiratory-induced anatomic motion for radiation treatment planning[J]. Med Phys, 2003, 30(1):88-97.
    [16] Vedam SS, Keal PJ, Kini VR, et al. Acquiring a four-dimensional computed tomography dataset using an exterual respiratory signal[J]. Phys Med Biol, 2003, 48(1):46-62.
    [17] Hugo GD, Agazaryan N, Solberg TD. The effects of tumor motion on planning and delivery of respiratory-gated IMRT[J]. Med Phys, 2003,30(6):1052-1066.
    [18] Neicu T, Shirato H, Seppenwoolde Y, et al. Synchronized moving aperture radiation therapy (SMART):average tumour trajectory for lung patients[J]. Phys Med Biol, 2003, 48(5):587-598.
    [19] Chen Z, Ning R. Why should breast tumor detection go three dimensional?[J]. 2003, 48(14):2217-2228.
    [20] Cherepenin VA, Karpov AY, Korjenevsky AV, et al. Three-dimensional EIT imaging of breast tissues:system design and clinical testing[J]. IEEE Trans Med Imaging, 2002, 21(6):662-667.
    [21] Heuvel FVD, Powell T, Seppi E, et al. Independent verification of ultrasound based image-gnided radiation treatment, using electric portal imaging and implanted gold markers[J]. Med Phys, 2003, 30(11):2878-2887.
    [22] Mahesh M, Cody D. Next-generation x-ray CT units will provide <500msec images with 3dresolution comparable to today's projection radiography[J]. Med Phys, 2003, 30(7):1543-1545.
    [23] Kuriyama K, Onishi H, Sano N, et al. A new irradiation unit constructed of self-moving gantry-CT and linac[J]. Int J Radiat Oncol Biol Phys, 2003, 55(2):428-435.
    [24] Court L, Rosen I, Mohan R, et al. Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system[J].Med Phys, 2003, 30(6):1198-1210.
  • [1] 吴湖炳18F-氟代脱氧葡萄糖PET-CT在头颈部肿瘤中的应用价值. 国际放射医学核医学杂志, 2005, 29(5): 205-209.
    [2] 庄永志王俊杰 . 放疗抑制血管成形术后再狭窄的研究进展. 国际放射医学核医学杂志, 2001, 25(5): 228-232.
    [3] 刘晓梅李冬雪潘莉萍 . 核医学对放疗诱发的肾、脑、唾液腺等正常组织损伤的监测. 国际放射医学核医学杂志, 2005, 29(4): 166-168.
    [4] 孙艳杨天恩 . 辐射诱导凋亡与放疗的关系. 国际放射医学核医学杂志, 1996, 20(6): 270-274.
    [5] 刘兴党刘永昌林祥通 . 图像融合及其临床应用. 国际放射医学核医学杂志, 1996, 20(4): 156-158.
    [6] 郭世文刘守勋蒋茂松 . SPECT脑灌注显像对颅脑损伤的诊断价值. 国际放射医学核医学杂志, 1997, 21(1): 19-21.
    [7] 吴蔚朱家瑞 . 信息融合技术的一个热点:医学图像融合. 国际放射医学核医学杂志, 1998, 22(3): 103-105.
    [8] 何小江黄劲雄俞浩吴华 . 腮腺动态显像评价鼻咽癌放疗对腮腺功能的影响. 国际放射医学核医学杂志, 2008, 32(5): 272-274.
    [9] 司宏伟耿建华陈盛祖 . PET-CT在调强适形放疗中的临床应用. 国际放射医学核医学杂志, 2005, 29(5): 223-226.
    [10] 朱苏雨胡炳强 . PET-CT用于肿瘤精确放疗靶区勾画的困惑. 国际放射医学核医学杂志, 2007, 31(4): 217-221.
  • 加载中
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  130
  • PDF下载量:  2
出版历程
  • 收稿日期:  2004-09-22

动态成像技术及其在精确放疗中的应用

  • 510515 广州, 南方医科大学生物医学工程系医学仪器教研室

摘要: 放射治疗的发展与现代医学影像技术密不可分,CT成像的空间分辨力和时间分辨力的提高使得动态CT日益成为临床应用的有效手段。在放疗模拟定位的应用中,采用呼吸门控技术得到呼吸周期中不同相位的三维图像,可掌握肿瘤目标随呼吸的运动变化规律,从而建立精确的数学模型,对改进治疗计划具有重要意义。此外,在直线加速器上嵌入两正交的X射线成像系统,以实时跟踪肿瘤目标的位置,也是四维放疗研究的一个方向。

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回