低剂量率辐射生物效应的研究进展

王济东 王俊杰

引用本文:
Citation:

低剂量率辐射生物效应的研究进展

  • 中图分类号: Q345.2

Advances in study of biological effects with low-dose rate irradiation

  • CLC number: Q345.2

  • 摘要: 辐射的剂量率能显著影响放射治疗的生物效应,降低剂量率就降低了生物效应。然而,当剂量率降低到一定阈值以下,DNA损伤不能激活细胞的探测器——共济失调毛细血管扩张症突变(ATM)基因以及ATM基因介导的损伤修复途径,因而出现细胞高的致死性,即"反剂量率效应"。在持续低剂量率照射下,主要有两条修复途径参与双链断裂(DSB)的修复,即非同源末端连接(NHEJ)修复和同源重组(HR)修复。这些修复系统在亚致死性损伤和产生剂量率效应中起重要作用,如果损伤得以完整和精确的修复,细胞的辐射敏感性就会发生改变;如果损伤不能被修复,则会诱导细胞凋亡。p53基因在低剂量率辐射引起的细胞周期阻滞和诱导细胞凋亡过程中起关键作用。
  • [1] Sugihara T, Magae J, Wadhwa R, et al. Dose and dose-rate effects of low-dose ionizing radiation on activation of Trp53 in immortalized murine cells[J]. Radiat Res, 2004, 162(3):296-307.
    [2] Berrada M, Yang Z, Lehnert SM. Sensitization to radiation from an implanted 125I source by sustained intratumoral release of chemotherapeutic drugs[J]. Radiat Res, 2004,162(1):64-70.
    [3] Vavrova J, Rezacova M, Vokurkova D, et al. Cell cycle alteration,apoptosis and response of leukemic cell lines to gamma radiation with high-and low-dose rate[J]. Physiol Res, 2004, 53(3):335-342.
    [4] Collis S J, Schwaninger JM, Ntambi AJ, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage[J]. J Biol Chem, 2004, 279(48):49624-49632.
    [5] Furre T, Furre EI, Koritzinsky M, et al. Lack of inverse dose-rate effect and binding of the retinoblastoma gene product in the nucleus of human cancer T-47D cells arrested in G2 by ionizing radiation[J].Int J Radiat Biol, 2004, 79(6):413-422.
    [6] Carlsson J, Hakansson E, Eriksson V, et al. Early effects of low doserate radiation on cultured tumor cells[J]. Cancer Biother Radilpharm,2003,18(4):663-670.
    [7] Enns L, Bogen KT, Wizniak J, et al. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis[J]. Mol Cancer Res,2004, 2(10):557-566.
    [8] Michell CR, Joiner MC. Effect of subsequent acute-dose irradiation on cell survival in vitro following low dose-rate exposures[J]. Int J Radiat Biol, 2002, 78(11):981-990.
    [9] Castro Kreder N, Van Bree C, Franken NA, et al. Effects of gemcitabine on cell survival and chromosome aberrations after pulsed low dose-rate irradiation[J]. J Radiat Res, 2004, 45(1):111-118.
    [10] Castro Kreder N, Ten Cate R, Van Bree C, et al. Cellular response to pulsed low dose-rate irradiation in X-ray sensitive hamster mutant cell lines[J]. J Radiat Res, 2004, 45(3):385-391.
    [11] Boucher D, Hindo J, Averbeck D. Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells[J]. Can J Physiol Pharmacol, 2004, 82(2):125-132.
    [12] Ishizaki K, Hayashi Y, Nakamura H, et al. No induction of p53phosphorylation and few focus formation of phosphorylated H2AX suggest efficient repair of DNA damage during chronic low-dose-rate irradiation in human cells[J]. J Radiat Res, 2004, 45(4):521-525.
    [13] Lieber MR, Ma Y, Pannicke U, et al. Mechanism and regulation of human non-homologous DNA end-joining[J]. Nature Rev Mol Cell Biol, 2003, 4(9):712-720.
    [14] Kroger LA, Denardo GL, Gumerlock PH, et al. Apoptosis-related gene and protein expression in human lymphoma xenografts after low dose rate radiation using 67Cu-21T-BAT-Lym-1[J]. Cancer Biother Radiopharm, 2001, 16(3):213-225.
    [15] RichT, Allen RL, Wgllie. Defying death after DNA damage[J]. Nature, 2000, 407(6805):777-783.
    [16] Szostak MJ, Kaur P, Amin P, et al. Apoptosis and Bcl-2 expression in prostate cancer:significance in clinical outcome after brachytherapy[J]. J Urol, 2001, 165(6 Pt1):2126-2130.
    [17] Kato F, Kakihara H, Kunugita N, et al. Role of p53 gene in apoptosis repair of genotoxic tissue damage in mice[J]. J Radiat Res, 2002, 43(suppl):209-212.
    [18] Mirzaie-Joniani H, Eriksson D, Johansson A, et al. Apoptosis in Hela Hep2 cells is induced by low-dose, low-dose-rate radiation[J].Radiat Res, 2002, 158(5):634-640.
    [19] Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, et al. Apoptosis induced by low-dose and low-dose-rate radiation[J]. Cancer, 2002,94(4 Suppl):1210-1214.
    [20] Murtha AD. Review of low-dose-rate radiobiology for Clinicians[J].Semin Radiat Oncol, 2000, 10(2):133-138.
  • [1] 冯彪田生礼刘及 . 抗癌基因p53与辐射致癌. 国际放射医学核医学杂志, 1995, 19(1): 35-37.
    [2] 龚守良刘树铮 . 生精细胞凋亡与电离辐射. 国际放射医学核医学杂志, 1999, 23(5): 227-230.
    [3] 古桂雄 . 辐射诱导发育脑细胞凋亡的分子调节. 国际放射医学核医学杂志, 2000, 24(2): 82-85.
    [4] 刘发全 . 辐射损伤与修复的研究近况. 国际放射医学核医学杂志, 2000, 24(4): 186-188.
    [5] 郭阳 . DNA链间交联的修复与辐射敏感性. 国际放射医学核医学杂志, 2007, 31(6): 371-372,376.
    [6] 高宇徐畅刘强 . EGFR和NRF2对电离辐射导致的DNA损伤修复的影响. 国际放射医学核医学杂志, 2023, 47(4): 211-219. doi: 10.3760/cma.j.cn121381-202303015-00294
    [7] 牛津梁 . DNA损伤修复能力对GPA基因突变频率的影响及其检测方法. 国际放射医学核医学杂志, 2001, 25(6): 279-282.
    [8] 张焕腾孙毓筱徐畅 . 泛素化修饰和SUMO化修饰在电离辐射诱导的DNA损伤修复中的作用机制. 国际放射医学核医学杂志, 2024, 48(2): 130-136. doi: 10.3760/cma.j.cn121381-202308031-00389
    [9] 郑秀龙 . DNA分子水平的放射效应研究. 国际放射医学核医学杂志, 1996, 20(1): 32-35.
    [10] 王芹刘强孙元明樊赛军樊飞跃 . X射线交叉互补修复基因多态性与肿瘤. 国际放射医学核医学杂志, 2013, 37(6): 370-373. doi: 10.3760/cma.j.issn.1673-4114.2013.06.011
    [11] 丘冠英 . DNA辐射损伤研究:热点与新进展. 国际放射医学核医学杂志, 2002, 26(4): 145-147.
  • 加载中
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  92
  • PDF下载量:  2
出版历程
  • 收稿日期:  2005-02-15

低剂量率辐射生物效应的研究进展

  • 100083 北京, 北京大学第三临床医院肿瘤治疗中心

摘要: 辐射的剂量率能显著影响放射治疗的生物效应,降低剂量率就降低了生物效应。然而,当剂量率降低到一定阈值以下,DNA损伤不能激活细胞的探测器——共济失调毛细血管扩张症突变(ATM)基因以及ATM基因介导的损伤修复途径,因而出现细胞高的致死性,即"反剂量率效应"。在持续低剂量率照射下,主要有两条修复途径参与双链断裂(DSB)的修复,即非同源末端连接(NHEJ)修复和同源重组(HR)修复。这些修复系统在亚致死性损伤和产生剂量率效应中起重要作用,如果损伤得以完整和精确的修复,细胞的辐射敏感性就会发生改变;如果损伤不能被修复,则会诱导细胞凋亡。p53基因在低剂量率辐射引起的细胞周期阻滞和诱导细胞凋亡过程中起关键作用。

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回