载药纳米微粒靶向输送和控释系统的研究进展

谭忠华

引用本文:
Citation:

载药纳米微粒靶向输送和控释系统的研究进展

    作者简介: 谭忠华(1970-),男,研究生,主要从事肿瘤核医学及核素治疗学的研究。;
  • 中图分类号: R943

Advances in research of targeting delivery and controlled release of drug-loaded nanoparticles

  • CLC number: R943

  • 摘要: 目前,生化药物仍是人类与疾病斗争的主要工具,发展安全高效的药物靶向输送和控释技术是提高疗效、减少药物用量及其毒副作用的关键。由纳米技术与现代药物学结合形成的载药纳米微粒是一种新型的药物输送体系,因其在药物的靶向输送、控释或缓释以及提高药物的生物利用度等方面具有其他输送体系难以比拟的优势,已成为现代药物制剂发展的趋势之一。
  • [1] Majeti NV, Ravi Kumar. Nano and microparticles as controlled drug delivery devices[J]. J Pharm Pharmaceut Sci, 2000, 3: 234-258.
    [2] Moghimi SM, Hunter AC, Murray JC. Long-Circulating and target-specific nanoparticles: theory to practice[J]. Pharmacol Rev, 2001,53: 283-318.
    [3] Kohori F, Yokoyama M, Sakai K, et al. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems[J]. J Control Release, 2002, 78: 155-163.
    [4] Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994, 263: 1600-1603.
    [5] Marschutz MK, Caliceti P, Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin.[J]. Pharm Res, 2000, 17: 1468-1474.
    [6] Takenaga M, Yamaguchi Y, Kitagawa A, et al. A novel sustained-release formulation of insulin with dramatic reduction in initial rapid release[J]. J Control Release, 2002, 70: 81-101.
    [7] Verger MLL, Fluckiger L, Kim YI, et al. Preparation and characterization of nanoparticles containing an antihypertensive agent[J]. Eur J Pharm Biopharm, 1998, 46: 137-143.
    [8] Radwan MA, Zaghloul IY, Aly ZH. In vivo performance of parcmeral theophylline-loaded polyisobutylcyanoacrylate nanoparticles in rats[J]. Eur J Pharm Sci, 1999, 8: 95-98.
    [9] Chang TM. Red blood cell substitutes[J]. Baillieres Best Pract Res Clin Haematol, 2000, 13: 651-667.
    [10] Russell-Jones GJ. Use of vitamin B12 conjugates to deliver protein drugs by the oral[J]. Crit Rev Ther Drug Carrier Syst, 1998, 15: 557-562.
    [11] Sinha J, Mukhopadhyay S, Das N, et al. Targeting of liposomal andrographolide to L. donovani-infected macrophagesin vivo[J]. Drug Deliv, 2000, 7: 209-213.
    [12] Alves-Rosa F, Stanganelli C, Cabrera J, et al. Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune thrombocytopenic purpura in a mouse model[J]. Blood, 2000, 96: 2834-2840.
    [13] Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides[J]. J Control Release, 1998, 53: 137-143.
    [14] Lambert G, Bertrand JR, Fattal E, et al. EWS fli-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice[J]. Biochem Biophys Res Commun, 2000, 279: 401-406.
    [15] Dass CR, Walker TL, Kalle WH, et al. A microsphere-lipo-some (microplex) vector for targeted gene therapy of cancer: II. In vivo biodistribution study in a solid tumor model[J]. Drug Deliv, 2000, 7: 15-19.
    [16] Benns JM, Kim SW. Tailoring new gene delivery for specific targets[J]. J Drug Terget, 2000, 8: 1-9.
    [17] Sudimark J, Lee RJ. Targeted drug delivery via the folate re-ceptor[J]. Adv Drug Del Rev, 2000, 41: 147-162.
    [18] Alexiou C, Arnold W, Klein RJ, et al. Locoregional cancer treatment with magnetic drug targeting[J]. Cancer Res,2000, 60: 6641-6648.
    [19] Panyam J, Zhou WZ, Prabha S, et al. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery[J]. FASEB J, 2002, 16: 1217-1226.
    [20] Zhou R, Mazurchuk R, Straubinger RM. Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model[J]. Cancer Res, 2002, 62: 2561-2566.
    [21] Raucher D, Chilkoti A. Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition[J]. Cancer Res, 2001, 61: 7163-7170.
    [22] Bourdon O, Mosqueira V, Legrand P, et al. A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells[J]. J Photochem Photobiol B, 2000, 55: 164-171.
    [23] Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels[J]. Adv Drug Del Rev, 2002, 54: 79-98.
    [24] Kim JJ, Park K. Modulated insulin delivery from glucose-sensitive hydrogel dosage forms[J]. J Control Release, 2001, 77: 39-47.
    [25] Kwok CS, Mourad PD, Crum LA, et al. Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery[J]. J Biomed Mater Res, 2001,57: 151-164.
    [26] Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes[J]. J pharamcol Exp Ther, 2000, 295: 309-313.
    [27] Goins B, Phillips WT, Klipper R. Blood-pool imaging using technetium-99m-labeled liposomes[J]. J Nucl Med, 1996, 37: 1374-1379.
    [28] Dams ETM, Oyen WJG, Boerman OC, et al. Tc-99m-PEG-liposomes for the scintigraphic detection of infection and inflammation: Clinical evaluation[J]. J Nucl Med, 2000, 41: 622-630.
    [29] Kostarelos K, Emfietzoglou D. Liposomes as carriers of radionuclides: from imaging to therapy[J]. J Liposome Res, 1999,9: 429-460.
  • [1] 陈倩倩张金赫 . 基于树状大分子材料构建的纳米载药体系用于肿瘤靶向治疗的研究进展. 国际放射医学核医学杂志, 2022, 46(5): 304-308. doi: 10.3760/cma.j.cn121381-202106013-00166
    [2] 王崇道黄琪 . Zn-DTPA的慢性释放植入给药. 国际放射医学核医学杂志, 1980, 4(2): 125-125.
    [3] 范永增袁耿彪 . 靶向性纳米药物对肿瘤的应用研究. 国际放射医学核医学杂志, 2010, 34(1): 16-19. doi: 10.3760/cma.j.issn.1673-4114.2010.01.004
    [4] 李桂荣宋小英 . WR-2721对照射诱发红细胞和微粒体内脂质过氧化和酶释放的影响. 国际放射医学核医学杂志, 1990, 14(5): 210-211.
    [5] 龚佳丽赵晋华 . 多模态纳米分子探针在动物模型易损斑块中靶向分子成像的研究进展. 国际放射医学核医学杂志, 2020, 44(10): 661-666. doi: 10.3760/cma.j.cn121381-201909035-00074
    [6] 张月倩王任飞贾强王汉杰张瑞国谭建常津131I标记共载两种靶向药物的多功能纳米载体的构建. 国际放射医学核医学杂志, 2017, 41(2): 88-93. doi: 10.3760/cma.j.issn.1673-4114.2017.02.002
    [7] 冯彦林谭家驹梁生孙静吴校连司建华夏姣云温广华 . [188Re(CO)3(H2O)3]+间接标记免疫磁性纳米微粒的实验研究. 国际放射医学核医学杂志, 2007, 31(4): 211-214.
    [8] 冯彦林谭家驹梁生孙静温广华吴校连夏姣云 . 抗人肝癌188Re-免疫磁性纳米微粒的生物学分布和肿瘤细胞抑制实验. 国际放射医学核医学杂志, 2007, 31(6): 321-324,328.
    [9] 宋世均编辑部 . SPECT的质量控制. 国际放射医学核医学杂志, 1988, 12(3): 188-189.
    [10] 郭永铁耿洁 . 双峰型胰岛素释放曲线的初步分析. 国际放射医学核医学杂志, 2010, 34(6): 359-362. doi: 10.3760/cma.j.issn.1673-4114,2010.06.011
  • 加载中
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  77
  • PDF下载量:  3
出版历程
  • 收稿日期:  2002-11-23

载药纳米微粒靶向输送和控释系统的研究进展

    作者简介:谭忠华(1970-),男,研究生,主要从事肿瘤核医学及核素治疗学的研究。
  • 200025 上海, 上海瑞金医院核医学科

摘要: 目前,生化药物仍是人类与疾病斗争的主要工具,发展安全高效的药物靶向输送和控释技术是提高疗效、减少药物用量及其毒副作用的关键。由纳米技术与现代药物学结合形成的载药纳米微粒是一种新型的药物输送体系,因其在药物的靶向输送、控释或缓释以及提高药物的生物利用度等方面具有其他输送体系难以比拟的优势,已成为现代药物制剂发展的趋势之一。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回