应用MRI评估肾功能的研究进展

陈雅青 郭燕 孟悛非

引用本文:
Citation:

应用MRI评估肾功能的研究进展

  • 中图分类号: R445.2

Approach to evaluation of renal function with MR imaging

  • CLC number: R445.2

  • 摘要: MRI提供丰富的肾脏实质及大血管的形态学诊断信息及肾脏各项功能参数,近年来得到较大发展.就肾功能相关的各种MRI技术包括传统序列成像、血氧饱和依赖成像、弥散加权成像、动脉自旋标记等非定量分析方法;对比剂增强首次通过法、MR肾图等定量分析法进行了综述.
  • [1] Semelka RC, Corrigan K, Ascher SM, et al. Renal corticomedullary differentiation:observation in patients with differing serum creatinine levels. Radiology, 1994, 190(1):149-152.
    [2] van den Dool SW, Wasser MN, de Fijter JW, et al. Functional renal volume:quantitative analysis at gadolinium-enhanced MR angiography-feasibility study in healthy potential kidney donors. Radiology, 2005, 236(1):189-195.
    [3] Hauger O, Delalande C, Deminiere C, et al. Nephrotoxic nephritis and obstructive nephropathy:evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology, 2000, 217(3):819-826.
    [4] Grenier N, Pedersen M, Hauger O. Contrast agents for functional and cellular MRI of the kidney. Eur J Radiol, 2006, 60(3):341-352.
    [5] Li LP, Storey P, Pierchala L,et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging, 2004, 19(5):610-616.
    [6] Afford SK, Sadowski EA, Unal O, et al. Delection of acute renal ischemia in swine using blood oxygen level-dependent magnetic resonance imaging. J Magn Reson Imaging, 2005, 22(3):347-353.
    [7] Thoeny HC, Zumstein D, Simon-Zoula S. Functional evaluation of transplanled kidneys wilh diffusion-weighted and BOLD MR imaging:initial experience. Radiology, 2006, 241(3):812-821.
    [8] Li L, Storey P, Kim D, et al. Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI. J Magn Reson Imaging, 2003, 17(6):671-675.
    [9] Santosh T, Anthony V, Li Lp, et al. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradient-recalled echo sequence. Investigative Radiology, 2006, 41(2):181-184.
    [10] Pedersen M, Wen JG, Shi Y, et al. The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl, 2003, (109):29-34.
    [11] Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging, 2003,17:104-113.
    [12] Martirosian P, Klose U, Mader I, et al. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med, 2004, 51(2):353-361.
    [13] Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging with FAIR True FISP spin labeling in patients with and wilhout renal artely stenosis. Radiology, 2006, 238(3):1013-1021.
    [14] Rusinek H, Lee VS. Johnson G. Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med, 2001,46(2):312-316.
    [15] Gandy SJ, Sudarshan TA, Sheppard DG, et al. Dynamic MRI contrast enhancement of renal cortex:a filnctional assessment of renovascular disease in palients with renal artery stenosis. J Magn Reson Imaging, 2003, 18(4):461-466.
    [16] Miehaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenusis:functional assessment with dynamic MR perfusion measurements-feasibility study. Radiology, 2006, 238(2):586-596.
    [17] Vallee JP, Lazeyras F, Khan HG, et al. Absolute renal blood flow quanlification by dynamic MRI and Gd-DTPA. Eur Radiol, 2000, 10(8):1245-1252.
    [18] Aumann S, Schoenberg SO, Just A, et al. Quantification of renal perfusion using an intravaseular contrast agent (part 1):results in a canine model. Magn Reson Med, 2003, 49(2):276-287.
    [19] Lenhard SC, Nerurkar SS, Schaeffer TR, et al. p38 MAPK inhibitors ameliorate target organ damage in hypertension:Part 2. Improved renal function as assessed by dynamic contrast-enhanced magnetic resonance imaging. J Pharmacol Exp Ther, 2003, 307(3):939-946.
    [20] Niendorf ER, Grist TM, Lee FT Jr, et al. Rapid in vivo measurement of single-kidney extraction fraction and glomerular filtration rate with MR imaging. Radiology, 1998, 206(3):791-798.
    [21] Lee VS, Rusinek H, Noz ME, et al. Dynamic three-dimensional MR renography for the measurement of single kidney function:initial experience. Radiology, 2003, 227(1):289-294.
  • [1] 冯苏洋邢炯舒敏刘加成 . 抑郁症相关执行功能障碍的磁共振成像研究进展. 国际放射医学核医学杂志, 2021, 45(12): 795-799. doi: 10.3760/cma.j.cn121381-202012010-00117
    [2] 李春星李华周仪方艺段婷婷 . 静息态功能磁共振成像技术对右侧小脑参与语言功能的应用研究. 国际放射医学核医学杂志, 2014, 38(4): 211-215. doi: 10.3760/cma.j.issn.1673-4114.2014.04.001
    [3] 邵丹高强徐卫平王淑侠 . 放射性核素肾动态显像与静脉肾盂造影评价肾功能的比较. 国际放射医学核医学杂志, 2008, 32(6): 340-342.
    [4] 闵捷李斌金凯梁维仁晁明 . 肝脏磁共振弹性成像的应用现状与展望. 国际放射医学核医学杂志, 2014, 38(4): 261-265. doi: 10.3760/cma.j.issn.1673-4114.2014.04.013
    [5] 黄娟颜剑豪梁联保江桂华 . 注射钆剂后弥散加权成像对乳腺肿瘤诊断的影响. 国际放射医学核医学杂志, 2015, 39(4): 287-291. doi: 10.3760/cma.j.issn.1673-4114.2015.04.003
    [6] 周翠屏沈君梁碧玲 . 干细胞移植的磁性标记及磁共振成像活体示踪. 国际放射医学核医学杂志, 2006, 30(4): 253-256.
    [7] 田海静 . 磁共振心肌灌注成像对急性心肌梗死的临床评价. 国际放射医学核医学杂志, 2007, 31(6): 388-388.
    [8] 王静姚振威 . 细胞磁共振成像技术在体示踪免疫细胞的研究进展. 国际放射医学核医学杂志, 2014, 38(5): 337-340. doi: 10.3760/cma.j.issn.1673-4114.2014.05.014
    [9] 杨红赵德善 . 移植肾的放射性核素评价. 国际放射医学核医学杂志, 2000, 24(1): 17-19.
    [10] 宋书扬韩旭汪蕾闫朝武方纬 . 核素心肌灌注/代谢显像与心脏磁共振成像评价缺血性心脏病心肌活力的对比研究. 国际放射医学核医学杂志, 2024, 48(1): 38-45. doi: 10.3760/cma.j.cn121381-202308010-00386
    [11] 杨晓棠杨继虎杜笑松张建新 . 磁共振扩散加权成像及动态增强MRI在乳腺病变中的应用价值. 国际放射医学核医学杂志, 2011, 35(3): 189-193. doi: 10.3760/cma.j.issn.1673-4114.2011.03.014
  • 加载中
计量
  • 文章访问数:  1489
  • HTML全文浏览量:  166
  • PDF下载量:  5
出版历程
  • 收稿日期:  2007-01-31

应用MRI评估肾功能的研究进展

  • 510080 广州, 广州市中山大学附属第一医院放射科

摘要: MRI提供丰富的肾脏实质及大血管的形态学诊断信息及肾脏各项功能参数,近年来得到较大发展.就肾功能相关的各种MRI技术包括传统序列成像、血氧饱和依赖成像、弥散加权成像、动脉自旋标记等非定量分析方法;对比剂增强首次通过法、MR肾图等定量分析法进行了综述.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回