18F-氟脱氧葡萄糖PET在放射性脑损伤诊断中的应用

郑慧芬 涂彧

引用本文:
Citation:

18F-氟脱氧葡萄糖PET在放射性脑损伤诊断中的应用

  • 基金项目:

    国家自然科学基金资助项目(30670638)

Application of 18F-fluodeoxyglucose PET in the diagnosis of radiation brain injury

  • 摘要: 随着放疗在脑部肿瘤治疗中的广泛应用,放射性脑损伤的诊断和治疗就显得尤为重要。18F-氟脱氧葡萄糖PET通过对脑组织细胞代谢功能的检测,能够早于形态学检查发现放射性脑损伤,并且在很大程度上能够鉴别放射性脑坏死与肿瘤复发,以指导临床治疗。
  • [1] Belka C, Budach W, Kortman RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms[J]. Br J Cancer, 2001, 85(9):1233-1239.
    [2] Peña LA, Fuks Z, Kolesinck RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system:protection by fibroblast growth factor and sphingomyelinase deficiency[J]. Cancer Res, 2000, 60(2):321-327.
    [3] Kimura T, Sako K, Tohyama Y, et al. Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastasis:value of proton magnetic resonance spectroscopy[J]. Acta Neurochir(Wien), 2003, 145(7):557-564.
    [4] 林曰增,张雪林,阎卫平.鼻咽癌放疗后放射性脑病的CT灌注研究[J].中华放射学杂志,2002,36(4):339-343.
    [5] Kutita H, Kawahara N, Asai A, et al. Radiation-induced apotosis of oligodendrocyteS in the adult rat brain[J]. Neurol Res, 2001, 23(8):869-874.
    [6] Nieder C, Andratschke N, Price RE, et al. Innovative prevention strategies for radiation necrosis of the central nervous system[J]. Anticancer Res, 2002, 22(2A):1017-1023.
    [7] New P. Radiation injury to the nervous system[J]. Curt Opin Neurol, 2001, 14(6):725-734.
    [8] Evans ES, Hahn CA, Kocak Z, et al. The role of functional imaging in the diagnosis and management of late normal tissue injury[J]. Semin Radiat Oncol, 2007, 17(2):72-80.
    [9] Patronas NJ, Di Chiro G, Brooks RA, et al. Work in progress:18F fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain[J]. Radiology, 1982, 144(4):885-889.
    [10] Spaeth N, Wyss MT, Weber B, et al. Uptake of 18F-tluorocholine, 18F-tluoroethyl-L-tyrosine,and 18F-FDG in acute cerebral radiation injury in the rat:implications for separation of radiation necrosis from tumor recurrence[J]. J Nucl Med, 2004, 45(11):1931-1938.
    [11] Hustinx R, Pourdehnad M, Kaschten B, et al. PET imaging for differentiating recurrent brain tumor from radiation necrosis[J].Radiol Clin Noah Am, 2005, 43(1):35-47.
    [12] Chao ST, Sub JH, Raja S, et al. The sensitivity and specificity of FDG PET indistinguishing recurrent brain tumor from redionecrosis in patients treated with stereotactic radiosugery[J]. Int J Cancer, 2001, 96(3):191-197.
    [13] Coleman RE, Hoffman JM, Hanson MW, et al. Clinical application of PET for the evaluation of brain tumor[J]. J Nucl Med, 1991, 32(4):616-622.
    [14] Beuthien-Baumann B, Hahn G, Winkler C, et al. Differentiation between recurrent tumor and radiation necrosis in a child with anaplastic ependymoma after chemotherapy and radiation therapy[J]. Strahlenther Onkol, 2003, 179(12):819-822.
    [15] Muthukrishnan A, Bajoghli M, Mountz JM. Delayed development of radiation vaseulopathy of the brain stem eortfirmed by F-18 FDG PET in a ease of anaplastie astroeytoma[J]. Clin Nuel Med, 2007, 32(7):527-531.
    [16] Ishikawa M, kikuchi H, Miyatake S, et al. Glucose consumption in recurrent gliomas[J]. Neurosurgery, 1993, 33(1):28-33.
    [17] Ricci PE, Karis JP, Heiserman JE, et al. Differentiating recurrent tumor from radiation necrosis:time for re-evaluation of positron emission tomography?[J]. AJNR Am J Neuroradiol, 1998, 19(3):407-413.
    [18] Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours[J]. Nucl Med Commun, 2008, 29(4):354-358.
    [19] Hung Gu, Tasi Sc, Lin WY, et al. Extraordinarily high F-18 FDG uptake cause by radiation necrosis in a patient with nasopharyngeal carcinoma[J]. Clin Nucl Med, 2005, 30(8):558-559.
    [20] Schlemmer HP, Bachert P, Henze M, et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy[J]. Neuroradiology, 2002, 44(3):216-222.
    [21] Yang S, Zhang C, Zhu T, et al. Resection of gliomas using positron emission tomography/computed tomography neuronavigation[J]. Neurol Med Chir (Tokyo), 2007, 47(9):397-401.
  • [1] 于明明王振光 . 创伤性脑损伤PET显像研究进展. 国际放射医学核医学杂志, 2015, 39(2): 157-160. doi: 10.3760/cma.j.issn.1673-4114.2015.02.012
    [2] 蔡晓君秦颂兵徐晓婷周菊英 . PET-CT图像融合技术在非小细胞肺癌适形放射治疗中的应用价值. 国际放射医学核医学杂志, 2008, 32(3): 143-146.
    [3] 郭宵峰刘建中孙琦婷 . 肺通气/灌注平面显像与肺灌注SPECT/CT对肺栓塞诊断价值的对比性研究. 国际放射医学核医学杂志, 2015, 39(4): 277-281. doi: 10.3760/cma.j.issn.1673-4114.2015.04.001
    [4] 黄蓉蓉丁桂荣 . 小胶质细胞在放射性脑损伤中的作用及其机制研究进展. 国际放射医学核医学杂志, 2021, 45(2): 124-131. doi: 10.3760/cma.j.cn121381-202005040-00018
    [5] 袁文佳涂彧崔凤梅 . 放射性脑损伤的发病机制及治疗. 国际放射医学核医学杂志, 2008, 32(4): 250-254.
    [6] 袁杰刘兴党韩梅 . SPECT、PET神经受体和转运体显像技术在海洛因成瘾研究中的应用. 国际放射医学核医学杂志, 2013, 37(1): 30-33, 41. doi: 10.3760/cma.j.issn.1673-4114.2013.01.009
    [7] 张高潮马丽寇莹陈正福宋晏徐金亮99Tcm-tetrofosmin SPECT诊断肺部肿瘤的临床价值. 国际放射医学核医学杂志, 2015, 39(4): 303-307. doi: 10.3760/cma.j.issn.1673-4114.2015.04.007
    [8] 高波王学建 . 放射性脑损伤分子机制及神经保护策略研究进展. 国际放射医学核医学杂志, 2007, 31(1): 40-44.
    [9] 孙晓昕田月琴 . PET-CT在冠状动脉疾病的临床应用. 国际放射医学核医学杂志, 2008, 32(3): 150-153.
    [10] 萨日赵红光关锋林承赫18F-FDG PET/CT在弥漫性大B细胞淋巴瘤疗效评价中的临床价值. 国际放射医学核医学杂志, 2013, 37(1): 9-12. doi: 10.3760/cma.j.issn.1673-4114.2013.01.003
  • 加载中
计量
  • 文章访问数:  1438
  • HTML全文浏览量:  118
  • PDF下载量:  2
出版历程
  • 收稿日期:  2007-09-13

18F-氟脱氧葡萄糖PET在放射性脑损伤诊断中的应用

  • 1. 214200 江苏, 江苏省宜兴市人民医院神经内科;
  • 2. 215123 苏州, 苏州大学放射医学与公共卫生学院放射卫生教研室
基金项目:  国家自然科学基金资助项目(30670638)

摘要: 随着放疗在脑部肿瘤治疗中的广泛应用,放射性脑损伤的诊断和治疗就显得尤为重要。18F-氟脱氧葡萄糖PET通过对脑组织细胞代谢功能的检测,能够早于形态学检查发现放射性脑损伤,并且在很大程度上能够鉴别放射性脑坏死与肿瘤复发,以指导临床治疗。

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回