PET、PET-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展

王冬艳 苏成海

引用本文:
Citation:

PET、PET-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展

    通讯作者: 苏成海, su323@126.com

Progression of comparison study between PET or PET-CT and magnetic resonance diffusion-weighted imaging in the investigation of tumor

    Corresponding author: Cheng-hai SU, su323@126.com
  • 摘要: PET-CT和磁共振弥散加权成像是两类检测恶性肿瘤的重要成像方法,前者提供肿瘤组织的功能代谢信息,比如葡萄糖代谢、氨基酸代谢等信息,后者反映水分子的运动状况,二者各有优缺点及适应证,二者有机结合能够对病变获得尽可能多的形态学与代谢学信息,有利于病变的局部定性和系统分期,显著提高诊断的准确率,为临床选择最优化的治疗方案提供最有效的信息。
  • 表 1  PET、PET-CT与磁共振弥散加权成像在肿瘤良恶性鉴别诊断中的效能比较(%)

    肿瘤类型 参考文献 病例数 PET或PET-CT 弥散加权成像
    灵敏度 特异度 准确率 灵敏度 特异度 准确率
    肺癌 [13] 110 72 82 - 73 96 -
    [14] 104 72 79 - 70 97 -
    [15] 56 - - 100 - - 100
    [16] 203 62.5 94.5 88.2 57.5 87.7 81.8
    [17] 115 96.0 85.6 87.8 96.0 78.9 82.6
    乳腺癌 [18] 20 94 99 98 91 72 76
    结直肠癌 [19] 25 30.0 76.9 85.2 80.0 100 85.2
    淋巴瘤 [20] 101 97 97 - - - -
    [21] 31 - - - 100 30.8 71.0
    前列腺癌 [22] 36 66 81 - - - -
    [23] 35 - - - 90~94 84~91 -
    甲状腺癌 [24] 44 100 66 - - -
    [25] 60 - - - 93.3 96.7 -
    [26] 51 100 59 - - - -
    [27] 67 - - - 97.5 91.7 98.9
    肝癌 [28] 102 27.2~92.8 - - - - -
    [29] 24 - - - 80~100 - -
    注: “-”表示无该项数据。
    下载: 导出CSV

    表 2  ET、PET-CT与磁共振弥散加权成像在肿瘤淋巴结转移灶诊断中的效能比较(%)

    肿瘤类型 参考文献 病例数 PET或PET-CT 弥散加权成像
    灵敏度 特异度 准确率 灵敏度 特异度 准确率
    肺癌 [15] 96 98 97 97 91 90 90
    [30] 734 72.0 97.0 96.2 67.0 99.0 97.7
    [31] 319 48 97 90 75 99 95
    乳腺癌 [18] 140 86 100 96 86 39 52
    [32] 48 96 96 96 73 77 75
    结直肠癌 [19] 23 30.0 100 69.6 80.0 76.9 78.3
    甲状腺癌 [33] 58 - - 61.7 - - 67.2
    前列腺癌 [34] 55 85.2 85.7 85.5 96.3 78.6 83.6
    注: “-”表示无该项数据。
    下载: 导出CSV

    表 3  PET或PET-CT标准化摄取值与弥散加权成像表观弥散系数关系的对比研究结果

    肿瘤类型 参考文献 病例数 比较对象 r P
    肺癌 [14] 104 ADCmin和SUVcr -0.504 < 0.001
    前列腺癌 [34] 14 SUV和ADC -0.5144 < 0.001
    宫颈癌 [35] 33 rADC和rSUV -0.526 0.0017
    直肠癌 [36] 33 SUVmax和ADCmin -0.45 0.009
    SUVmean和ADCmean -0.402 0.02
    乳腺癌 [37] 44 SUVmax和ADC -0.486 0.001
    头颈部肿瘤 [39] 47 ADCmean和SUVmean -0.222 0.1325
    ADCratio和SUVmean 0.667 < 0.001
    ADCratio和SUVmax 0.5855 < 0.001
    [40] 31 SUVmax和ADC_DWIBS -0.238 0.13
    SUVmax和ADC_EPI -0.113 0.561
    霍奇金淋巴瘤 [42] 16 治疗前SUVmax和ADCmean -0.38 0.005
    治疗后SUVmax和ADCmean -0.07 0.606
    ΔSUVmaxΔADCmean -0.41 0.002
    注: 表中,SUVcr=肿瘤SUV/对侧肺SUV; rADC=ADCmin/ADCmean; rSUV=SUVmax/SUVmean; SUVbri=肿瘤SUVmax/小脑SUVmax; ADCratio=ADCb值=2000/ADCb值=1000; ADC_DWIBS表示使用弥散加权成像背景抑制技术时获得的ADC; ADC_EPI表示使用弥散加权成像平面成像技术获得的ADC; ΔSUVmax=(治疗前SUVmax-治疗后SUVmax)/治疗前SUVmax; ΔADCmean=(治疗前ADCmean-治疗后ADCmean)治疗前ADCmean
    下载: 导出CSV
  • [1] Czernin J, Allen-Auerbath M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med, 2007, 48 suppl 1: 78s-88.
    [2] Schöder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin's lymphoma. J Clin Oncol, 2005, 23(21): 4643-4651. doi: 10.1200/JCO.2005.12.072
    [3] Cerfolio RJ, Bryant AS, Winokur TS, et al. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg, 2004, 78(6): 1903-1909. doi: 10.1016/j.athoracsur.2004.06.102
    [4] Radan L, Ben-Haim S, Bar-shalom R, et al. The role of FDG-PET/ CT in suspected recurrence of breast cancer. Cancer, 2006, 107(11): 2545-2551. doi: 10.1002/cncr.22292
    [5] Hübner KF, Buonocore E, Gould HR, et al. Differentiating benign from malignant lung lesions using "quantitative" parameters of FDG PET images. Clin Nucl Med, 1996, 21(12): 941-949. doi: 10.1097/00003072-199612000-00005
    [6] Dehdashti F, Mortimer JE, Sieqel BA, et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med, 1995, 36(10): 1766-1774.
    [7] 俎栋林. 核磁共振成像学. 北京: 高等教育出版社, 2004: 231-315.
    [8] Fiebach JB, Schellinger PD, Sartor K, et al. 脑卒中磁共振成像. 孙波, 译. 北京: 人民卫生出版社, 2005: 13-19.
    [9] Antoch G, Stattaus J, Nemat AT, et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology, 2003, 229(2): 526-533. doi: 10.1148/radiol.2292021598
    [10] Brush J, Boyd K, Chappell F, et al. The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health Technol Assess, 2011, 15(35): 1-192, iii-iv.
    [11] Pelosi E, Preqno P, Penna D, et al. Role of whole-body[18F]fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin Lymphoma. Radiol Med, 2008, 113(4): 578-590. doi: 10.1007/s11547-008-0264-7
    [12] Freudenberg LS, Antoch G, Schütt P, et al. FDG-PET/CT in restaging of patients with lymphoma. Eur J Nucl Med Mol Imaging, 2004, 31(3): 325-329. doi: 10.1007/s00259-003-1375-y
    [13] Ohba Y, Nomori H, Mori T, et al. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F18 in imaging non-small cell lung cancer?. J Thorac Cardiovasc Surg, 2009, 138(2): 439-445. doi: 10.1016/j.jtcvs.2008.12.026
    [14] Mori T, Nomori H, Ikeda K, et al. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol, 2008, 3(4): 358-364. doi: 10.1097/JTO.0b013e318168d9ed
    [15] Chen W, Jian W, Li HT, et al. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up?. Magn Reson Imaging, 2010, 28(5): 613-620.
    [16] Ohno Y, Koyama H, Onishi Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion weighted imaging compared with integrated FDG PET/CT. Radiology, 2008, 248(2): 643-654. doi: 10.1148/radiol.2482072039
    [17] Takenaka D, Ohno Y, Matsumoto K, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of wholebody diffusion-weighted imaging(DWI) whole-body MR imaging without and with DWI, whole-body FDG-PET/CT and bone scintigraphy. J Magn Reson Imaging, 2009, 30(2): 298-308. doi: 10.1002/jmri.21858
    [18] Heusner TA, Kuemmel S, Koeninger A, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging, 2010, 37(6): 1077-1086. doi: 10.1007/s00259-010-1399-z
    [19] Ono K, Ochiai R, Yoshida T, et al. Comparison of diffusionweighted MRI and 2-[fluorine-18]-fuoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging, 2009, 29(2): 336-340. doi: 10.1002/jmri.21638
    [20] Pinilla I, Gómez-León N, Del Campo-Del Val L, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging, 2011, 55(5): 567-575.
    [21] Li S, Xue HD, Li J, et al. Application of whole body diffusion weighted MR imaging for diagnosis and staging of malignant lymphoma. Chin Med Sci J, 2008, 23(3): 138-144. doi: 10.1016/S1001-9294(09)60028-6
    [22] Farsad M, Schiavina R, Castellucci P, et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med, 2005, 46(10): 1642-1649.
    [23] Kim CK, Park BK, Han JJ, et al. Diffusion-weighted imaging of the prostate at 3T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr, 2007, 31(3): 449-454. doi: 10.1097/01.rct.0000243456.00437.59
    [24] De Geus-Oei LF, Pieters GF, Bonenkamp JJ, et al. 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med, 2006, 47(5): 770-775.
    [25] Ren S, Liu CH, Bai RJ. Value of diffusion weighted imaging in diagnosis of nodular lesions of thyroid: a preliminary study. Zhonghua Yi Xue Za zhi, 2010, 90(47): 3351-3354.
    [26] Traugott AL, Dehdashti F, Trinkaus K, et al. Exclusion of malignancy in thyroid nodules with indeterminate fine-needle aspiration cytology after negative 18F-fluorodeoxyglucose positron emission tomography: Interim analysis. World J Surg, 2010, 34(6): 1247-1253. doi: 10.1007/s00268-010-0398-3
    [27] Razek AA, Sadek AG, Kombar OR, et al. Role of apparent diffusion coefficient values in differentiation between malignant and benign solitary thyroid Nodules. AJNR Am J Neuroradiol, 2008, 29(3): 563-568. doi: 10.3174/ajnr.A0849
    [28] Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18FFDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med, 2008, 49(12): 1912-1921. doi: 10.2967/jnumed.108.055087
    [29] Yu JS, Chung JJ, Kim JH, et al. Detection of small intrahepatic metastases of hepatocellular carcinomas using diffusion-weighted imaging: comparison with conventional dynamic MRI. Magn Reson Imaging, 2011, 29(7): 985-992. doi: 10.1016/j.mri.2011.04.010
    [30] Nomori H, Mori T, Ikeda K, et al. Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg, 2008, 135(4): 816-822. doi: 10.1016/j.jtcvs.2007.10.035
    [31] Usuda K, Zhao XT, Sagawa M, et al. Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers. Ann Thorac Surg, 2011, 91(6): 1689-1695. doi: 10.1016/j.athoracsur.2011.02.037
    [32] Schmidt GP, Baur-Melnyk A, Haug A, et al. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol, 2008, 65(1): 47-58.
    [33] Nagamachi S, Wakamatsu H, Kiyohara S, et al. Comparison of diagnostic and prognostic capabilities of 18F-FDG-PET/CT, 131I-scintigraphy, and diffusion-weighted magnetic resonance imaging for postoperative thyroid cancer. Jpn J Radiol, 2011, 29(6): 413-422. doi: 10.1007/s11604-011-0572-z
    [34] Beer AJ, Eiber M, Souvatzoglou M, et al. Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in 11C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol, 2011, 13(2): 352-361. doi: 10.1007/s11307-010-0337-6
    [35] Ho KC, Lin G, Wang JJ, et al. Correlation of apparent diffusion coefficients measured by 3 T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging, 2009, 36(2): 200-208. doi: 10.1007/s00259-008-0936-5
    [36] Gu J, Khong PL, Wang S, et al. Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol, 2011, 13(5): 1020-1028. doi: 10.1007/s11307-010-0433-7
    [37] Nakajo M, Kajiya Y, Kaneko T, et al. FDG PET/CT and diffusionweighted imaging for breast cancer: prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2011-2020. doi: 10.1007/s00259-010-1529-7
    [38] Tanimoto K, Yoshikawa K, Obata T, et al. Role of glucose metabolism and cellularity for tumor malignancy evaluation using FDG-PET/CT and MRI. Nucl Med Commun, 2010, 31(6): 604-609. doi: 10.1097/MNM.0b013e328339350c
    [39] Choi SH, Paeng JC, Sohn CH, Correlation of18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med, 2011, 52(7): 1056-1062.
    [40] Fruehwald-Pallamar J, Czerny C, Mayerhoefer ME, et al. Functional imaging in head and neck squamous cell carcinoma: correlation of PET/CT and diffusion-weighted imaging at 3 Tesla. Eur J Nucl Med Mol Imaging, 2011, 38(6): 1009-1019. doi: 10.1007/s00259-010-1718-4
    [41] Wu X, Korkola P, Pertovaara H, et al. No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: a PET/CT and DW-MRI study. Eur J Radiol, 2011, 79(2): 117-121. doi: 10.1016/j.ejrad.2011.04.062
    [42] Punwani S, Prakash V, Bainbridge A, et al. Quantitative diffusion weighted MRI: a functional biomarker of nodal disease in Hodgkin lymphoma?. Cancer Biomark, 2010, 7(4): 249-259.
    [43] Larson SM, Schwartz LH. 18F-FDG PET as a candidate for"qualified biomarker": functional assessment of treatment response in oncology. J Nucl Med, 2006, 47(6): 901-903.
    [44] Hickeson M, Yun M, Matthies A, et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG PET. Eur J Nucl Med Mol Imaging, 2002, 29(12): 1639-1647. doi: 10.1007/s00259-002-0924-0
    [45] Bilgili Y, Unal B. Effect of region of interest on interobserver variance in apparent diffusion coefficient measures. AJNR Am J Neuroradiol, 2004, 25(1): 108-111.
    [46] 赵周社, 辛军, 郭启勇, 等. 多种正电子示踪剂PET联合显像在肿瘤基础研究、临床诊断和疗效监测中应用进展. 中国临床医学影像杂志, 2009, 20(10): 764-769. doi: 10.3969/j.issn.1008-1062.2009.10.010
    [47] 郭洪波, 于金明, 杨国仁. 18F-FDG PET肿瘤显像中应注意的几个问题. 中华核医学杂志, 2007, 27(5): 316-318.
    [48] Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18F-FDG PET and PET/CT oncologic imaging. Semin Nucl Med, 2004, 34(2): 122-133. doi: 10.1053/j.semnuclmed.2003.12.003
    [49] 陈香, 赵军, 赵晋华. PET-MRI: 值得期待的分子影像未来. 国际放射医学核医学杂志, 2008, 32(4): 196-201.
  • [1] 陈涛樊建中李文菲吴彩云18F-FDG PET/CT与增强CT在成人原发前纵隔恶性肿瘤中的诊断价值. 国际放射医学核医学杂志, 2020, 44(9): 548-553. doi: 10.3760/cma.j.cn121381-201906009-00072
    [2] 陈超坤刘亮傅飞先于浩 . 囊性胸腺瘤和囊性畸胎瘤的影像学特征及鉴别诊断. 国际放射医学核医学杂志, 2016, 40(1): 31-34. doi: 10.3760/cma.j.issn.1673-4114.2016.01.007
    [3] 王冬艳苏成海 . PET、PEP-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展. 国际放射医学核医学杂志, 2011, 35(6): 339-346. doi: 10.3760,cma.j.issn.1673-4114.2011.06.005
    [4] 邓玮玮张春银 . 放射性核素显像在帕金森病鉴别诊断中的应用. 国际放射医学核医学杂志, 2017, 41(2): 132-136. doi: 10.3760/cma.j.issn.1673-4114.2017.02.010
    [5] 田亚东袁卫红 . 影像学及肿瘤相关抗原在诊断肺癌中的应用. 国际放射医学核医学杂志, 2011, 35(5): 295-299. doi: 10.3760/cma.j.issn.1673-4114.2011.05.011
    [6] 陈鹏宋长祥陆武刘永袁小帅杜鹏 . SPECT同机定位CT引导经皮肺穿刺活检术联合肿瘤标志物检测对周围型肺癌的诊断价值. 国际放射医学核医学杂志, 2018, 42(1): 21-24, 29. doi: 10.3760/cma.j.issn.1673-4114.2018.01.004
    [7] 江茂情吴华18F-FDG和18F-FLT PET-CT在肿瘤非手术治疗早期疗效评价中的应用. 国际放射医学核医学杂志, 2012, 36(6): 339-343. doi: 10.3760/cma.j.issn.1673-4114.2012.06.005
    [8] 王城王春梅邬心爱王雪梅11C-胆碱与18F-FDG双时相PET/CT显像结合高分辨率CT在孤立性肺结节鉴别诊断中的应用. 国际放射医学核医学杂志, 2017, 41(5): 325-330, 346. doi: 10.3760/cma.j.issn.1673-4114.2017.05.004
    [9] 沈国华周惠君邓候富贾志云68Ga标记的SSR靶向多肽PET/CT显像的研究进展及其在神经内分泌肿瘤中的初步应用. 国际放射医学核医学杂志, 2015, 39(1): 75-79.
    [10] 陈立陈跃 . 分化型甲状腺癌骨转移诊断及疗效评价的核素显像研究进展. 国际放射医学核医学杂志, 2016, 40(6): 452-458. doi: 10.3760/cma.j.issn.1673-4114.2016.06.010
  • 加载中
表(3)
计量
  • 文章访问数:  1352
  • HTML全文浏览量:  569
  • PDF下载量:  1
出版历程
  • 收稿日期:  2011-10-14
  • 刊出日期:  2011-11-25

PET、PET-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展

    通讯作者: 苏成海, su323@126.com
  • 215006, 苏州大学附属第一医院核医学科

摘要: PET-CT和磁共振弥散加权成像是两类检测恶性肿瘤的重要成像方法,前者提供肿瘤组织的功能代谢信息,比如葡萄糖代谢、氨基酸代谢等信息,后者反映水分子的运动状况,二者各有优缺点及适应证,二者有机结合能够对病变获得尽可能多的形态学与代谢学信息,有利于病变的局部定性和系统分期,显著提高诊断的准确率,为临床选择最优化的治疗方案提供最有效的信息。

English Abstract

  • 恶性肿瘤是现代社会人类健康最严重的威胁之一, 早期发现肿瘤并准确对其分期是提高肿瘤治疗效果的关键。PET-CT是目前临床常采用的一种重要的全身成像技术, 通过反映病灶的葡萄糖代谢或氨基酸代谢等水平, 在肿瘤的术前评估、系统分期、放化疗效应的评价、术后病灶残余或肿瘤复发的显示中具有极高的价值[1-4]。而MRI特有的高软组织对比度、高空间分辨率和无辐射成像的优点, 加之近年来扫描速度的提高、强大多样的扫描序列及各种功能成像的应用, 使得MRI的应用备受关注。本文主要综述PET、PET-CT与磁共振弥散加权成像(diffusion-weighted imaging, DWI)的对比研究进展, 以及标准化摄取值(standarzied uptake value, SUV)与表观弥散系数(apparent diffusion coefficient, ADC)的关系, 以期为临床选择合适的医学影像检查方法提供参考。

    • PET是通过探测正电子放射性核素进行临床分子影像成像的设备, 是以正电子核素或正电子核素标记的化合物(如配体、抗体和酶等)作为示踪剂, 探测示踪剂在活体内正负电子结合发生湮没后, 所产生的方向相反、能量相等(511 keV)的γ射线的成像设备。PET-CT是在PET的基础上采用同机X线CT对PET所探测到的γ射线进行衰减校正, 为PET所获得的组织细胞在分子水平上的信息提供高分辨率的解剖结构信息, 并进行同机PET和CT的图像融合, 以及独立行使诊断CT功能的一体化设备。随着PET-CT仪器的不断改进和完善, 其能检测人体中生理性特定成分, 因此被认为是迄今最先进的临床分子影像设备之一。

      PET图像与MRI、CT和超声等图像相比, 其最大特点是采用特定的正电子示踪剂获得组织细胞的特定信息。18F-FDG是葡萄糖的结构类似物, 是目前PET-CT最常用的显像剂, 与葡萄糖代谢相同, 18F-FDG可通过细胞膜上的葡萄糖转运蛋白(glucose transporter, GLUT)转运入细胞, 在细胞质内经己糖激酶的催化生成6-磷酸-FDG, 但此产物不能被1, 6-二磷酸葡萄糖异构酶催化生成18F-葡萄糖-1, 6-二磷酸继续糖代谢, 所以滞留于细胞内而显像。肿瘤细胞的细胞膜上除具有与正常细胞膜上相同的GLUT2、GLUT4和GLUT5外, 还具有GLUT3, 故肿瘤细胞的葡萄糖摄取量高于正常细胞。同时, 肿瘤细胞的有氧氧化和无氧酵解(尤其是无氧酵解)的速度比正常细胞快, 因此18F-FDG在肿瘤细胞内的积聚增加。

      PET-CT通常使用半定量指标SUV来描述病灶摄取放射性示踪剂的多少, SUV对于鉴别病变的良、恶性具有一定的参考价值, 国际上通常使用SUV=2.5作为肿瘤良、恶性的分界点, 但根据肿瘤类型的不同, 也有许多学者提出不同的分界点[5-6]

    • 磁共振DWI是建立在传统MRI技术上的显示人体特殊组织成分、组织细胞简单灌注和代谢的信息的显像方法。组织细胞间水分子的布朗运动是DWI的理论基础。纯水中水分子在37℃时的弥散系数大约是3×10-3 mm2/s, 比生物组织中水分子的弥散系数大2~10倍[7-8]。这主要是由于组织中细胞和纤维组织等对水分子弥散运动的影响, 以及部分水分子在运动过程中与细胞和纤维组织上的大分子交换所致。由于水分子的运动距离仅数微米, MRI的系统分辨力达不到直接检测的目的, 但是可以采用间接的方法进行。在高频脉冲与数据采集间, 加上一对双极梯度脉冲: 第一个梯度脉冲使质子自旋去相位, 如果没有水分子的运动, 则第二个梯度脉冲可使其完全复相位。水分子的随机运动造成DWI信号减弱, 其减弱程度与水分子的运动速度相关。由于像实体瘤这样的大部分肿瘤组织在细胞学上具有生长密集、核质比高的特点, 使得细胞内和细胞外可供水分子自由扩散运动的空间变小, 在DWI中弥散运动受限而呈现高信号, 通过测量ADC就能够为探测组织细胞水平的微观变化提供可能性。由此看出, DWI可反映组织细胞水平的微观解剖结构变化, 这也是DWI的肿瘤生物学基础。同时, DWI还可间接反映组织细胞的增殖信息。

    • 目前普遍认为, PET-CT全身显像最重要的临床应用是对肿瘤的系统分期[9-10], 尤其是在淋巴瘤等血液系统恶性肿瘤中的应用[11-12]。很多学者对PET、PET-CT与DWI在肿瘤良恶性的鉴别诊断、肿瘤淋巴结转移灶的检测及疗效评估方面进行了对比研究, 这些研究结果有些类似, 有些存在明显不同。以下分别介绍PET、PET-CT与DWI在肿瘤良恶性的鉴别诊断和肿瘤淋巴结转移的检测中的应用。

    • 肿瘤良恶性的鉴别诊断是肿瘤早期诊断的基础, 很多学者不断地努力总结肿瘤的各种特征, 包括形态学、功能代谢学以及化学元素分析等各方面, 试图寻找最佳的良、恶性鉴别点, 最大可能地提高诊断的准确率。

      Ohba等[13]对110例非小细胞肺癌患者分别行18F-FDG PET和DWI, 利用显像的特征曲线对SUVcr(肿瘤SUV/对侧肺SUV)和ADCmin进行分析, 结果得出18F-FDG PET和DWI鉴别非小细胞肺癌的灵敏度和特异度的差别无统计学意义。Mori等[14]在对104例肺部结节或肿块患者的研究中使用了相同方法, 并得出了类似的结果, 不过Mori等指出, DWI在鉴别炎症时具有较低的假阳性率。Chen等[15]对56例非小细胞肺癌患者进行18F-FDG PET和全身DWI对比分析, 得出二者诊断肺部原发病灶具有相同的准确率。而Ohno等[16]和Takenaka等[17]分别对203例和115例非小细胞肺癌的18F-FDG PETCT和全身DWI研究发现, PET-CT的灵敏度、特异度及准确率均优于全身DWI, 但Takenaka等[17]指出, DWI对非小细胞肺癌的骨髓侵犯具有较高的特异度, 可能是由于Ohba等[13]、Mori等[14]和Chen等[15]使用的是18F-FDG PET而不是PET-CT, 缺乏CT形态学方面的信息。Heusner等[18]对20例乳腺癌患者的研究发现, 18F-FDGPET-CT的诊断灵敏度、特异度及准确率均高于DWI, 且后者的假阳性率较高。Ono等[19]通过对25例结直肠癌患者的回顾性分析认为, 18F-FDG PET检测原发灶的效能优于DWI, 而对淋巴结转移灶的检测则DWI优于18F-FDG PET。而对淋巴瘤研究的结果表明, 18FFDGPET-CT的诊断效能显著优于DWI[20-21]

      表 1是不同学者对PET、PET-CT和DWI在肿瘤良恶性鉴别诊断中效能的比较结果[13-29]。由表 1可以看出: 对于肺癌和淋巴瘤, PET或PET-CT的诊断效能均优于DWI; 对于前列腺癌[22-23]和甲状腺癌[24-27], DWI的诊断效能优于PET或PET-CT; 对于乳腺癌, 则与DWI相结合的其他MRI序列有关; 对于肝癌, 根据肿瘤病灶大小的不同, 18FFDGPET-CT诊断的灵敏度差异较大, 而DWI对肝癌的检出率较好, 尤其是对小于1 cm的病灶, 由于肝脏固有的葡萄糖摄取本底较高, 18F-FDG PETCT则容易出现假阴性[28-29]。需要指出的是, 上述研究中, 前列腺癌PET-CT使用的是11C-胆碱作为示踪剂, 其能提高对前列腺癌的检出率; 另外, 就甲状腺癌的病灶而言, 18F-FDGPET-CT的特异度较低, 实际工作中要注意结合超声检查及相关化验指标。

      肿瘤类型 参考文献 病例数 PET或PET-CT 弥散加权成像
      灵敏度 特异度 准确率 灵敏度 特异度 准确率
      肺癌 [13] 110 72 82 - 73 96 -
      [14] 104 72 79 - 70 97 -
      [15] 56 - - 100 - - 100
      [16] 203 62.5 94.5 88.2 57.5 87.7 81.8
      [17] 115 96.0 85.6 87.8 96.0 78.9 82.6
      乳腺癌 [18] 20 94 99 98 91 72 76
      结直肠癌 [19] 25 30.0 76.9 85.2 80.0 100 85.2
      淋巴瘤 [20] 101 97 97 - - - -
      [21] 31 - - - 100 30.8 71.0
      前列腺癌 [22] 36 66 81 - - - -
      [23] 35 - - - 90~94 84~91 -
      甲状腺癌 [24] 44 100 66 - - -
      [25] 60 - - - 93.3 96.7 -
      [26] 51 100 59 - - - -
      [27] 67 - - - 97.5 91.7 98.9
      肝癌 [28] 102 27.2~92.8 - - - - -
      [29] 24 - - - 80~100 - -
      注: “-”表示无该项数据。

      表 1  PET、PET-CT与磁共振弥散加权成像在肿瘤良恶性鉴别诊断中的效能比较(%)

    • 确定肿瘤是否伴有淋巴结转移对于肿瘤的准确分期和临床选择治疗方案均具有重要的价值。Chen等[15]对56例非小细胞肺癌患者的研究发现, PET-CT对96处淋巴结转移灶的灵敏度、特异度和准确率均显著高于DWI, 并得出DWI对淋巴结和远处转移具有较高的灵敏度和准确率, 但是对颈部淋巴结转移的特异度较差, 对肺部小结节灶的灵敏度也较差。Nomori等[30]对88例N期非小细胞肺癌的研究得出, 18F-FDG PET-CT对淋巴结的检测比DWI具有更高的准确率(89% vs.78%), 而且发现对于长径大于1 cm的淋巴结, DWI在鉴别淋巴结炎时具有较低的假阳性率。然而, Usuda等[31]对63例肺癌患者的319处淋巴结进行的PET-CT和DWI的对比研究却得出, 18F-FDGPET-CT的灵敏度、特异度和准确率均低于DWI的结果, 作者认为原发灶表现为小的磨玻璃样的肺部病灶, 其PET-CT的检出率低于DWI, 小于20 mm淋巴结的SUVmax要比实际低, 并且DWI较18F-FDG PET-CT在淋巴结的检测中具有较低的假阳性率。Heusner等[18]和Schmidt等[32]分别对20例及33例乳腺癌患者的对比研究均得出, 对于乳腺癌淋巴结转移灶的检测, 18F-FDG PET-CT的诊断效能要显著优于全身DWI, Schmidt等还认为18F-FDG PET-CT比DWI能发现更多的淋巴结转移灶, 尤其是腋窝与纵膈的淋巴结; 而对于远处转移的病灶, 全身DWI能够显示更多的骨和肝脏上的转移灶。Ono等[19]回顾性分析25例结直肠癌患者18F-FDG PET和DWI发现, 18FFDG PET在检测原发灶方面优于DWI, 而在检测淋巴结转移灶方面则DWI优于18F-FDG PET, 但该研究的样本量较少。Nagamachi等[33]与Beer等[34]分别对36例甲状腺癌及14例前列腺癌的淋巴结转移灶的研究发现, 18F-FDG PET-CT和DWI具有近似的诊断价值, 但在后者的研究中有55个前列腺淋巴结转移灶直径均大于5 mm。

      表 2是不同学者对PET-CT与DWI诊断肿瘤淋巴结转移灶的效能的比较结果[15,18-19,30-34]。由表 2可以看出, 18F-FDG PET-CT和DWI对肿瘤淋巴结转移灶的诊断价值与淋巴结的位置、大小及原发肿瘤的病理类型有密切关系, 不同学者的研究也由于样本量、统计学方法、SUV与ADC域值设定以及纳入研究的淋巴结大小不同等因素, 得出了不同的研究结果, 因此需要进一步进行大样本量且统一标准的对比研究。

      肿瘤类型 参考文献 病例数 PET或PET-CT 弥散加权成像
      灵敏度 特异度 准确率 灵敏度 特异度 准确率
      肺癌 [15] 96 98 97 97 91 90 90
      [30] 734 72.0 97.0 96.2 67.0 99.0 97.7
      [31] 319 48 97 90 75 99 95
      乳腺癌 [18] 140 86 100 96 86 39 52
      [32] 48 96 96 96 73 77 75
      结直肠癌 [19] 23 30.0 100 69.6 80.0 76.9 78.3
      甲状腺癌 [33] 58 - - 61.7 - - 67.2
      前列腺癌 [34] 55 85.2 85.7 85.5 96.3 78.6 83.6
      注: “-”表示无该项数据。

      表 2  ET、PET-CT与磁共振弥散加权成像在肿瘤淋巴结转移灶诊断中的效能比较(%)

    • 恶性肿瘤组织由于过度增殖, 耗能大, 在PETCT上表现为葡萄糖代谢水平升高, SUV增大; 另外, 恶性肿瘤组织由于增殖过快, 单位体积内细胞数目增多, 细胞膜表面积增大, 增加了水分子的弥散障碍, 在DWI中则表现为ADC降低。所以, SUV与ADC之间的关系值得重视。

      Mori等[14]对104例肺癌患者的研究得出, SUVcr与ADCmin之间具有中度负相关性。Beer等[34]对前列腺癌淋巴结转移灶的研究得出, SUV与ADC之间存在中度负相关性, 而且良恶性淋巴结的SUV与ADC均有显著差异。Ho等[35]对33例宫颈癌患者的研究发现, 病灶在中度分化以上或病理类型为腺癌时, rADC(ADCmin/ADCmean)与rSUV(SUVmax/SUVmean)之间具有中度负相关性, 而分化较差或者病理类型为鳞癌时则两者无相关性。Gu等[36]通过对33例直肠癌患者的分析得出, SUV与ADC之间存在轻度负相关性。Nakajo等[37]对44例乳腺癌患者的研究发现, SUVmax与ADC存在轻度负相关性, 且二者分别与肿瘤病理分化级别存在正相关性和负相关性。Tanimoto等[38]对16例胰腺癌患者的研究发现, SUVmean与ADCmean、SUVbri(肿瘤SUVmax/小脑SUVmax)与ADCmean之间存在微弱的负相关性, 并指出SUV对肿瘤恶性程度的诊断具有较高的特异度, 而ADC则具有较高的灵敏度, 二者结合可以提高诊断的准确率。

      Choi等[39]对47例头颈部鳞状细胞癌患者的研究得出, SUV与ADC之间无相关性, 而SUV与ADCratio(ADCb值=2000/ADCb值=1000)存在明显的相关性(b值即弥散敏感系数)。但该研究中DWI选用了高b值(b值=1000和2000 s/mm2), 虽然较高的b值所测得的ADC受血流灌注的影响小, 能较好地反映组织内水分子的弥散运动, 但也能引起较大的信号下降和图像的信噪比下降, 各向异性更加明显。而Fruehwald-Pallamar等[40]利用全身DWI背景抑制技术及平面成像技术两种DWI的成像方式, 选取b值=0和800 s/mm2, 对31例头颈部鳞状细胞癌的研究得出, SUV与ADC之间无相关性。

      Wu等[41]对15例弥漫性大B细胞淋巴瘤患者进行PET-CT和DWI得出, SUV与ADC之间无相关性, 并指出弥漫性大B细胞淋巴瘤的SUV和ADC都有与炎症重叠的可能, 而且DWI图像容易受影响而形成伪影及变形, 但作者认为DWI与PET-CT能够相互补充, 提供更多的组织细胞功能信息。Punwani等[42]对16例年龄为14~18岁的霍奇金淋巴瘤患者的研究表明, 治疗前SUVmax与ADCmean存在微弱的负相关性, 治疗后SUVmax与ADCmean之间无相关性, 而ΔSUVmax((治疗前SUVmax-治疗后SUVmax)/治疗前SUVmax)与ΔADCmean((治疗前ADCmean-治疗后ADCmean)/治疗前ADCmean)之间存在微弱的负相关性。

      表 3是不同学者从不同角度对SUV与ADC关系的对比研究结果[14,34-42], 由表 3可以看出, 大多数研究结果表明SUV与ADC之间, 或者是通过各种方式转换得出的SUV与ADC之间存在轻度到中度的负相关性; SUV与ADC在腺癌中的相关性程度偏高, 而在鳞癌中则稍差, 可基本明确SUVmean与ADCmean之间无相关性; 另外, SUV与ADC之间的相关性还可能与肿瘤的分化程度及治疗情况有关。

      肿瘤类型 参考文献 病例数 比较对象 r P
      肺癌 [14] 104 ADCmin和SUVcr -0.504 < 0.001
      前列腺癌 [34] 14 SUV和ADC -0.5144 < 0.001
      宫颈癌 [35] 33 rADC和rSUV -0.526 0.0017
      直肠癌 [36] 33 SUVmax和ADCmin -0.45 0.009
      SUVmean和ADCmean -0.402 0.02
      乳腺癌 [37] 44 SUVmax和ADC -0.486 0.001
      头颈部肿瘤 [39] 47 ADCmean和SUVmean -0.222 0.1325
      ADCratio和SUVmean 0.667 < 0.001
      ADCratio和SUVmax 0.5855 < 0.001
      [40] 31 SUVmax和ADC_DWIBS -0.238 0.13
      SUVmax和ADC_EPI -0.113 0.561
      霍奇金淋巴瘤 [42] 16 治疗前SUVmax和ADCmean -0.38 0.005
      治疗后SUVmax和ADCmean -0.07 0.606
      ΔSUVmaxΔADCmean -0.41 0.002
      注: 表中,SUVcr=肿瘤SUV/对侧肺SUV; rADC=ADCmin/ADCmean; rSUV=SUVmax/SUVmean; SUVbri=肿瘤SUVmax/小脑SUVmax; ADCratio=ADCb值=2000/ADCb值=1000; ADC_DWIBS表示使用弥散加权成像背景抑制技术时获得的ADC; ADC_EPI表示使用弥散加权成像平面成像技术获得的ADC; ΔSUVmax=(治疗前SUVmax-治疗后SUVmax)/治疗前SUVmax; ΔADCmean=(治疗前ADCmean-治疗后ADCmean)治疗前ADCmean

      表 3  PET或PET-CT标准化摄取值与弥散加权成像表观弥散系数关系的对比研究结果

    • SUV是描述病灶放射性摄取量的指标, 在18FFDG PET-CT中, SUV对于鉴别病变的良、恶性具有一定的参考价值。SUV受多种因素的影响: ①患者个体因素: 人种、年龄、性别、体重、是否绝经、性激素水平、血糖水平等; ②与肿瘤生物学特性相关的因素: 肿瘤类型、分化程度、增殖率、分期、受体状态、癌基因与抑癌基因的表达等[43]; ③SUV的测定和校正方式: PET图像采集后的后处理技术、PET和γ计数仪的交叉校正因子也可能影响SUV的计算。另外, 由于仪器分辨率的原因, 对体积较小(直径 < 1.5 cm)肿瘤的检查结果不够准确[44]; 瘤体内各区域的血供、灌注、氧合状态和代谢底物浓度均有所不同, 即使对于同一个体, 也可能因疾病发展阶段、治疗时间和SUV测量时间的不同而出现差异。因此, 在使用SUV鉴别病灶的良、恶性时, 一定要结合病灶的位置、形态、大小、数量及病灶内的放射性摄取分布情况等, 同时密切结合患者的病史和其他影像及客观检查结果进行综合分析。还有, SUVmax和SUVmean何者更具代表性、不同仪器所得SUV如何进行标准化以资对比等问题, 均亟待解决。

      ADC图系DWI的另一种表现形式, 它是指ADC通过计算机处理后的一种图像, 直接反映水分子在组织内扩散的快慢, ADC越大, 表示水分子的扩散活动越强。其主要的影响因素包括: ①b值的选择: ADC随着b值的增加而显著下降, 高b值能够提高DWI的灵敏度, 但会使图像信噪比降低; ②各向异性: 弥散是一个矢量, 不仅具有大小, 也具有方向, 各向异性是水分子弥散矢量的重要体现, 即水分子在某个位置上可以向任意一个方向运动, 但是其向各个方向运动的量并不相同, 如水分子在平行于神经纤维的方向上较垂直方向上更易弥散; ③不同解剖部位的水分子弥散特性: 不同的解剖部位由于细胞的密度和结构不同, 其对水分子的弥散限制也不同[45]; ④此外, 患者的年龄、运动和血流、射频脉冲和梯度的不稳定造成的涡流等因素都会影响ADC。

    • 人体脏器运动对PET-CT和DWI的图像均有严重的影响。PET和CT的图像并非同时采集, 而是先后采集, 由于人体呼吸运动、心跳以及肠道蠕动的影响, 可导致PET图像与CT图像的不匹配, 对于靠近膈肌的病灶定位尤需注意。DWI由于是间接监测组织细胞间水分子的运动, 胸腹部脏器的运动幅度已经明显超过DWI自身的分辨率。

      PET-CT依赖于正电子示踪剂既是其特点也是其缺陷, 因为一种正电子示踪剂仅仅反映组织细胞的一种特定信息。目前, PET-CT的发展趋势是联合应用多种正电子示踪剂以达到同时提高灵敏度和特异度的目的[46]。另外, PET-CT产生的射线对组织细胞具有电离辐射作用, 这是其无法克服的缺陷。因此, 如何降低辐射剂量及其对人体及环境的影响是必须高度重视的问题。

      此外, 不同解剖部位的生理性摄取需要特别注意鉴别, 比如肠道黏膜、乳腺、鼻咽部黏膜及棕色脂肪组织的摄取, 肌紧张的肌肉摄取, 眼球运动的眼球周围肌肉的摄取, 心肌以及泌尿系统的摄取等, 有可能掩盖较小病变, 导致漏诊的可能性[47]。CT的衰减校正也可能引起许多伪像, 除位置的移动和呼吸运动引起的衰减校正错误外, 对于体内金属和造影剂的过度校正也会导致假阳性[48]

      缺乏特异性是DWI图像在临床应用中的缺陷。DWI仅仅反映局限的、特定时间段的微观组织细胞间隙水分子随机运动的状态。ADC是一个综合指标, 直接受到b值选择的影响。临床使用的半定量指标ADC也并不适用于分子影像研究和个性化医疗研究。DWI与组织细胞间隙和病变的密度变化直接相关, 能够更好地反映其微观变化(如淋巴结疾病), 但是由于DWI缺乏特异性, 这就明显降低了其临床价值。目前, DWI并不能单独进行临床诊断, 仅仅是辅助MRI进行诊断而已, 这与PET-CT完全不同, PET-CT已经具有完全独立的临床诊断价值。

    • PET-CT实现了功能和解剖结构显像的融合, 在临床和科研中均获得了巨大成功。由于MRI优越的软组织对比度, 其对脑部肿瘤、肝脏肿瘤、骨髓肿瘤及其转移灶的探测率明显优于CT, 对乳腺、子宫及骨骼肌肉恶性病灶的诊断效能也优于CT, 而且MRI可以获得功能信息, 如DWI、磁共振波谱分析和灌注成像等。因此, PET与MRI的有机结合已成为医学影像学发展的重要内容之一, 目前, 小动物和人脑部PET-MRI已初步实现, 相信PET-MRI将为我们展现一个新的分子影像学未来[49]。但需要看到的是, 即使PET-MRI投入临床使用, 由于MRI对金属植入禁忌等固有缺陷, PET-MRI也不会取代PET-CT在临床中的应用。

参考文献 (49)

目录

    /

    返回文章
    返回