肿瘤组织乏氧与葡萄糖代谢

司宏伟 徐慧琴 岳峤 耿建华 陈盛祖

引用本文:
Citation:

肿瘤组织乏氧与葡萄糖代谢

    通讯作者: 司宏伟, sihw@163.com
  • 基金项目:

    安徽省自然科学基金(项目编号:090413132)

Hypoxia and glycometabolism in cancer tissue

    Corresponding author: SI Hong-wei, sihw@163.com ;
  • 摘要: 乏氧是导致放、化疗失败原因之一,活体探知葡萄糖和乏氧代谢空间分布,有助于修订放疗计划以提高治疗效果、早期评估患者放化疗疗效和预后。18F-氟脱氧葡萄糖(18F-FDG)沉积主要依赖血流供应,与细胞摄取率关系较弱,且仅反映肿瘤细胞膜葡萄糖通量大小,无法区分有氧代谢、细胞增殖旺盛组织和乏氧组织。临床经验提示,18F-FDG综合反映肿瘤恶性程度,且葡萄糖代谢和乏氧代谢空间分布差异大者肿瘤侵袭性较强。18F-FDG和18F-氟米索硝唑的摄取总体相仿,但不能除外局部差异。目前的研究结果并不能完全否认18F-FDG可作为乏氧标志物使用,但其评估肿瘤乏氧状态的价值或特异性有限。
  • [1] Thomlinson RH,Gray LH,The histological structure of some human lung cancers and the possible implications for radiotherapy.Br J Cancer,1955, 9(4):539-549.
    [2] Fyles AW,Milosevic M,Wong et al.Oxygenation predicts radiation response and survival in patients with cervix cancer.Radiother Oncol,1998,48(2):149-156.
    [3] Busk M,Horsman MR,Kristjansen PE,et al.Aerobic glycolysis in cancers:implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia.Int J Cancer,2008,122(12):2726-2734.
    [4] Dierckx RA,Van de Wiele C.FDG uptake,a surrogate of tumour hypoxia?.Eur J Nucl Med Mol Imaging,2008,35(8):1544-1549.
    [5] Wei W,Yu XD,Hypoxia-inducible factors:crosstalk between their protein stability and protein degradation.Cancer Lett,2007,257(2):145-156.
    [6] Maloyan A,Eli-Berchoer L,Semenza GL,et al.HIF-lalpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart.Physiol Genomics,2005,23(1):79-88
    [7] Airley RE,Mobasheri A.Hypoxic regulation of glucose transport,anaerobic metabolism and angiogenesis in cancer novel pathways and targets for anticancer therapeutics.Chemotherapy,2007,53(4):233-256.
    [8] Clavo AC,Brown RS,Wahl RL.Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia.J Nucl Med,1995,36(9):1625-1632.
    [9] Thorwarth D, Eschmann SM, Holzner F,et al Combined uptake of[18F] FDC and[18F] FMISO correlates with radiation therapy outcome in head-and-neck cancer patients.Radiother Oncol,2006,80(2):151-156.
    [10] Schroeder T,Yuan H,Viglianti BL,et al.Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat.Cancer Res,2005,65(12):5163-5171.
    [11] Troost EG,Laverman P, Kaanders JH,et al.Imaging hypoxia after oxygenation-modificalion:comparing[18F] FMIS0 autoradiography with pimonidazole immunohistochemistry in human xenograft tumors.Radiother Oncol,2006,80(2):157-164.
    [12] Pugachev A,Ruan S,Carlin S,et al.Dependence of FDG uptake on tumor microenvironment.Int J Radiat Oncol Biol Phys,2005,62(2):545-553.
    [13] Tanaka T,Furukawa T,Fujieda S,et al.Double-tracer autoradiography with Cu-ATSM/FDG and immunohistochemical interpretation in four different mouse implanted tumor models,Nucl Med Biol,2006,33(6):743-750.
    [14] Picchio M,Beck R,Haubner R,et al.Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18FAZA and 125I-Gluco-RGD autoradiography.J Nucl Med,2008,49(4):597-605.
    [15] Zanzonico P,O'Donoghue J,Chapman JD,et al.Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning-Eur J Nucl Med Mol Imaging,2004,31(1):117-128.
    [16] Dence CS,Ponde DE, Welch MJ,et al.Autoradiographic and small-animal PET comparisons between 18F-FMISO,18F-FDG,18F-FLT and the hypoxic selective 66Cu-ATSM in a rodent model ofcancer.Nucl Med Biol,2008, 35(6):713-720.
    [17] Obata A,Yoshimoto M,Kasamatsu S,et al.Intra-tiunoral distribution of 66Cu-ATSM:a comparison study with FDG.Nucl Med Biol,2003,30(5):529-534.
    [18] Wyss MT,Honer M,Schubiger PA,et al.NanoPET imaging of[18F] fluoromisonidazole uptake in experimental mouse tumours.Eur J Nucl Med Mol Imaging 2006,33(3):311-318.
    [19] Zanzonico P,Carapa J,Polycarpe-Holman D,et al.Animal-specific positioning molds for registration of repeat imaging studies:comparative microPET imaging of F18-labeled fluoro-deoxyglucose and fluoro-misonidazole in rodent tumors.Nucl Med Biol,2006,33(1):65-70.
  • [1] 孙琳高再荣张永学18F-氟代脱氧葡萄糖PET-CT用于恶性肿瘤治疗疗效评估与监测. 国际放射医学核医学杂志, 2006, 30(6): 328-331.
    [2] 吕慧清张中民吕仲虹18F-氟代脱氧葡萄糖PET在恶性肿瘤适形放射治疗中的价值. 国际放射医学核医学杂志, 2006, 30(6): 335-337.
    [3] 宋少莉黄钢18F-氟脱氧葡萄糖PET监测实体瘤放化疗疗效的应用进展. 国际放射医学核医学杂志, 2007, 31(5): 284-288.
    [4] 邢岩赵晋华18F-氟脱氧葡萄糖PET及PET-CT早期诊断肿瘤复发. 国际放射医学核医学杂志, 2007, 31(6): 341-344.
    [5] 郑磊李前伟18F-氟脱氧葡萄糖PET在原发陛肝细胞癌中的应用. 国际放射医学核医学杂志, 2008, 32(1): 23-26.
    [6] 张玉娜赵晋华18F-氟脱氧葡萄糖PET-CT在头颈部肿瘤临床诊治中的价值. 国际放射医学核医学杂志, 2007, 31(6): 359-362.
    [7] 曹霞谢爱民莫逸彭翔18F-氟脱氧葡萄糖PET-CT在非小细胞肺癌临床分期及经治患者疗效评价中的应用. 国际放射医学核医学杂志, 2008, 32(4): 214-216.
    [8] 叶慧莫逸谢爱民彭翔18F-氟脱氧葡萄糖PET-CT与99nTc-亚甲基二膦酸盐骨显像诊断转移性骨肿瘤的对比研究. 国际放射医学核医学杂志, 2008, 32(3): 147-150.
    [9] 郭阳 . 红细胞生成素及其受体与肿瘤组织乏氧的关系及对治疗的影响. 国际放射医学核医学杂志, 2007, 31(5): 306-308.
    [10] 江茂情吴华18F-FDG和18F-FLT PET对肿瘤放化疗疗效评价的实验研究. 国际放射医学核医学杂志, 2011, 35(3): 146-151. doi: 10.3760/cma.j.issn.1673-4114.2011.03.004
  • 加载中
计量
  • 文章访问数:  2016
  • HTML全文浏览量:  377
  • PDF下载量:  4
出版历程
  • 收稿日期:  2009-04-07

肿瘤组织乏氧与葡萄糖代谢

    通讯作者: 司宏伟, sihw@163.com
  • 1. 安徽医科大学第一附属医院核医学科, 合肥, 230022;
  • 2. 中国医学科学院北京协和医学院肿瘤医院核医学科, 北京, 100021
基金项目:  安徽省自然科学基金(项目编号:090413132)

摘要: 乏氧是导致放、化疗失败原因之一,活体探知葡萄糖和乏氧代谢空间分布,有助于修订放疗计划以提高治疗效果、早期评估患者放化疗疗效和预后。18F-氟脱氧葡萄糖(18F-FDG)沉积主要依赖血流供应,与细胞摄取率关系较弱,且仅反映肿瘤细胞膜葡萄糖通量大小,无法区分有氧代谢、细胞增殖旺盛组织和乏氧组织。临床经验提示,18F-FDG综合反映肿瘤恶性程度,且葡萄糖代谢和乏氧代谢空间分布差异大者肿瘤侵袭性较强。18F-FDG和18F-氟米索硝唑的摄取总体相仿,但不能除外局部差异。目前的研究结果并不能完全否认18F-FDG可作为乏氧标志物使用,但其评估肿瘤乏氧状态的价值或特异性有限。

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回