99Tcm-tetrofosmin:一种评价体内P-糖蛋白功能变化的显像剂

袁超 李卫鹏

引用本文:
Citation:

99Tcm-tetrofosmin:一种评价体内P-糖蛋白功能变化的显像剂

    通讯作者: 袁超, ychsysu@yahoo.com.cn

99Tcm-tetrofosmin: a functional imaging agent of evaluation P-glycoprotein modulation in vivo

    Corresponding author: YUAN Chao, ychsysu@yahoo.com.cn ;
  • 摘要: 99Tcm-tetrofosmin是一种制备简便、使用广泛的显像剂,在体内和体外它均为多药耐药蛋白和P-糖蛋白转运的底物。它的特点与99Tcm-甲氧基异丁基异腈(99Tcm-MIBI)相似但不完全一样。现有的文献提示,有关多药耐药性功能显像和体内多药耐药性功能调节的临床研究可以通过99Tcm-tetrofosmin和99Tcm-MIBI显像来进行,但是两者似乎不能互换。
  • [1] Georgoulias P, Tzavara C, Demakopoulous N, et al. Incremental prognostic value of 99mTc-tetrofosmin myocardial SPECT after percutaneous coronary intervention. Ann Nucl Med, 2008, 22(10):899-909.
    [2] Alexiou GA, Tsiouris S, Kyritsis AP, et al. 99mTc-Tetrofosmin SPECT for the detection of glioma recurrence. Eur J Nucl Med Mol Imaging, 2008, 35(8):1571-1572.
    [3] Spanu A, Cottu P, Manca A, et al. Scintimammography with dedicated breast camera in unifocal and multifocal/multicentric primary breast cancer detection:a comparative study with SPECT. Int J Oncol, 2007, 31(2):369-377.
    [4] 陈慧玲,白海.肿瘤多药耐药的研究进展.临床肿瘤学杂志,2008,13(5):475-477.
    [5] Abaan OD, Mutlu PK, Baran Y, et al. Muhidrug resistance mediated by MRPI gene overexpression in breast cancer patients. Cancer Invest, 2009, 27(2):201-205.
    [6] Haslam IS, Jones K, Coleman T, et al. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol, 2008, 76(7):850-861.
    [7] Takahashi K, Shibata T, Oba T, et al. Muhidrug-resistance-associated protein plays a protective role in menadione-induced oxidative stress in endothelial cells. Life Sci, 2009, 84(7-8):211-217.
    [8] Odening KE, Li W, Rutz R, et al. Enhanced complement resistance in drug-selected P-glycoprotein expressing multi-drug-resistant ovarian carcinoma cells. Clin Exp hnmunol, 2009, 155(2):239-248.
    [9] Schmidt M, Teitge M, Castillo ME, et al. Synthesis and biochemical characterization of new phenothiazines and related drugs as MDR reversal agents. Arch Pharm(Weinhemin), 2008, 341(10):624-638.
    [10] Morschhauser F, Zinzani PL, Burgess M, et al. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar. 3HC1 trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin's lymphoma. Leuk Lymphoma, 2007, 48(4):708-715.
    [11] Bihorel S, Camenisch G, Lemaire M, et al. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res, 2007, 24(9):1720-1728.
    [12] Carlson RW, O'Neill AM, Goldstein L J, et al. A pilot phase II trial of valspodar modulation of multidmg resistance to paclitaxel in the treatment of metastatic carcinoma of the breast (E1195):a triat of the Eastern Cooperative Oncology Group. Cancer Invest, 2006, 24(7):677-681.
    [13] Péréz-Tomás. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. Curr Med Chem, 2006, 13(16):1859-1876.
    [14] Utsunomiya K, Ballinger JR, Piquette-Miller M, et al. Comparison of the accumulation and efflux kinetics of technetium-99msestamibi and technetium-99mtetrofosmin in an MRP-expressing tumor cell line. Eur J Nucl Med, 2000, 27(12):1786-1792.
    [15] Dorajoo R, Pereira BP, Yu Z, et al. Role of multi-drug resistanceassociated protein-1 transporter in statin-induced myopathy. Life Sci, 2008, 82(15-16):823-830.
    [16] Lewis-Wambi JS, Kim HR, Wambi C, et al. Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res, 2008, 10(6):R104.
    [17] Bankstahl JP, Kuntner C, Abrahim A, et al. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET. J Nucl Med, 2008, 49(8):1328-1335.
    [18] Kurdziel KA, Kalen, JD, Hirsch JI, et al. Imaging muhidrug resistance with 4-[18F]fluoropaclitaxel. Nucl Med Biol, 2007, 34(7):823-831.
    [19] Yang A, Xue J, Li X, et al. Experimental and clinical observations of 99mTc-MIBI uptake correlate with P-glyeoprotein expression in lung cancer. Nucl Med Commun, 2007, 28(9):696-703.
    [20] Burak Z, Moretti JL, Ersoy O, et al. 99mFc-MIBI imaging as a predictor of therapy respose in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med, 2003, 44(9):1394-1401.
    [21] Elhendy A, Schinkel AF, van Domberg RT, et al. Non-invasive diagnosis of in stent stenosis by stress 99m technetium tetrofosmin myocardial perfusion imaging. Int J Cardiovasc Imaging, 2006, 22(5):657-662.
    [22] Younès A, Songadele JA, Maublant J, et al. Mechanism of uptake of technetium-tetrofosmin. II:Uptake into isolated adult rat heart mitochondria. J Nucl Cardiol, 1995, 2(4):327-333.
    [23] Piwnica-Worms D, Chiu ML, Budding M, et al. Functional imaging of muhidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res,1993, 53(5):977-984.
    [24] Ballinger JR, Bannerman J, Boxen I, et al. Technetium-99m-tetrofosmin as a substrate for P-glyeoprotein:in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med, 1996, 37(9):1578-1582.
    [25] Liu Z, Stevenson GD, Barrett HH, et al. Imaging recognition of inhibition of multidrug resistance in human breast eaneer xenografts using 99mTc-labeled sestamibi and tetrofosmin.Nncl Med Biol, 2005, 32(6):573-583.
    [26] Chen WS, Luker KE, Dahlheimer JL, et al. Effects of MDR1 and MDR3 P-glycoproteins, MRPI, and BCRP/MXR/ABCP on the transport of 99mTc-tetrofosmin. Biochem Pharmacol, 2000, 60(3):413-426.
    [27] Soderlund V, Jonsson C, Bauer HC, et al. Comparison of technetium-99m-MIBI and technetium-99m-tetrofosmin uptake by musculoskeletal sarcomas. J Nucl Med,1997, 38(5):682-686.
    [28] Mansi L, Rambaldi PF, Cuccurullo V, et al. Diagnostic and prognostic role of 99mTc-tetrofosmin in breast cancer. Q J Nutl Med, 1997, 41(3):239-250.
    [29] Sun SS, Hsieh JF, Tsai SC, et al. Technetium-99m tetrofosmin mammoscintigraphy findings related to the expression of P-glycoprotein mediated multidrug resistance. Anticancer Res, 2000, 20(3A):1467-1470.
  • [1] 何燕苏晋郑晓霞温莉孙树兰 . P-糖蛋白抑制剂在PET显像中的应用研究. 国际放射医学核医学杂志, 2016, 40(1): 1-5, 21. doi: 10.3760/cma.j.issn.1673-4114.2016.01.001
    [2] 张一秋石洪成99Tcm-甲氧基异丁基异腈SPECT预测肺癌多药耐药及化疗疗效. 国际放射医学核医学杂志, 2008, 32(6): 329-332.
    [3] 钱习军99Tcm-MIBI显像对肿瘤多药耐药检测的应用. 国际放射医学核医学杂志, 2002, 26(4): 173-176.
    [4] 赵韬99Tcm-MIBI显像检测乳腺癌P-糖蛋白. 国际放射医学核医学杂志, 2004, 28(6): 262-264.
    [5] 孟德刚孙晓光黄钢 . SPECT-CT在临床肿瘤学中的应用. 国际放射医学核医学杂志, 2009, 33(4): 214-218. doi: 10.3760/cma.j.issn.1673-4114.2009.04.007
    [6] 程兵99Tcm-MIBI显像检测乳腺癌多药耐药. 国际放射医学核医学杂志, 2002, 26(2): 67-71.
    [7] 陈跃黄占文 . SPECT-CT的临床应用进展. 国际放射医学核医学杂志, 2006, 30(5): 280-282.
    [8] 白景明李亚明 . 体内多药耐药的显像研究. 国际放射医学核医学杂志, 1999, 23(5): 208-212.
    [9] 赵亮林勤吴华陈皓鋆 . 放射性核素标记的成纤维细胞活化蛋白抑制剂在肿瘤诊疗一体化中的研究进展. 国际放射医学核医学杂志, 2022, 46(10): 629-634. doi: 10.3760/cma.j.cn121381-202112017-00226
    [10] 咸雨蔚左书耀 . 甲状腺肿瘤SPECT-CT融合显像的应用近况. 国际放射医学核医学杂志, 2006, 30(3): 157-160.
    [11] 李小东张遵城董华董萍赵洪刚郭永涛 . 核医学技术在肿瘤治疗中的应用与进展. 国际放射医学核医学杂志, 2006, 30(3): 163-167.
  • 加载中
计量
  • 文章访问数:  1579
  • HTML全文浏览量:  174
  • PDF下载量:  4
出版历程
  • 收稿日期:  2009-01-04

99Tcm-tetrofosmin:一种评价体内P-糖蛋白功能变化的显像剂

    通讯作者: 袁超, ychsysu@yahoo.com.cn
  • 安徽省蚌埠医学院第一附属医院核医学科, 安徽 233004

摘要: 99Tcm-tetrofosmin是一种制备简便、使用广泛的显像剂,在体内和体外它均为多药耐药蛋白和P-糖蛋白转运的底物。它的特点与99Tcm-甲氧基异丁基异腈(99Tcm-MIBI)相似但不完全一样。现有的文献提示,有关多药耐药性功能显像和体内多药耐药性功能调节的临床研究可以通过99Tcm-tetrofosmin和99Tcm-MIBI显像来进行,但是两者似乎不能互换。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回