微小RNAs在分子放射生物学中的研究进展

周冲 王利利 周菊英

引用本文:
Citation:

微小RNAs在分子放射生物学中的研究进展

Progress of microRNAs in molecular radiobiology

  • 摘要: 微小RNAs (miRNAs)是一类新近发现的能调节基因表达的短小非编码RNA.miRNAs通过负性调节靶基因,在辐射诱导的凋亡、辐射耐受性、旁观者效应等辐射反应中起重要作用.越来越多的证据表明,miRNAs与放射治疗所致的辐射生物效应相关.miRNAs有可能成为改善放射治疗肿瘤疗效的潜在新靶点.
  • [1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5):843-854.
    [2] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772):901-906.
    [3] Sassen S, Miska EA, Caldas C. MicroRNA:implications for cancer. Virchows Arch, 2008, 452(1):1-10.
    [4] Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+cells. Blood, 2007, 109(10):4399-4405.
    [5] Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma ceils. Oncogene, 2007, 26(34):5017-5022.
    [6] Ishii H, Saito T. Radiation-induced response of micro RNA expression in murine embryonic stem cells. Med Chem, 2006, 2(6):555-563.
    [7] Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stress. Cancer Res, 2006, 66(22):10843-10848.
    [8] Maes OC, An J, Sarojini H, et al. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Bioehem, 2008, 105(3):824-834.
    [9] Jaklevic B, Uyetake L, Wichmann A, et al. Modulation of ionizing radiation-induced apoptosis by bantam microRNA in Drosophila. Dev Biol, 2008, 320(1):122-130.
    [10] Ohnishi T, Takahashi A, Mori E, et al. p53 Targeting can enhance cancer therapy via radiation, heat and anti-cancer agents. Anticancer Agents Med Chem, 2008, 8(5):564-570.
    [11] Henneking H. p53 enters the microRNA world. Cancer Cell, 2007, 12(5):414-418.
    [12] Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res, 2007, 67(23):11111-11116.
    [13] Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science, 2003, 300(5622):1155-1159.
    [14] Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One, 2006, 1(1):e116.
    [15] Yee Koh M, Spivak-Kroizman TR, Powis G. HIF-1 regulation:not so easy come, easy go. Trends Biochem Sci, 2008, 33(11):526-534.
    [16] Morgan WF, Sowa MB. Non-targeted bystander effects induced by ionizing radiation. Mutat Res, 2007, 616(1-2):159-164.
    [17] Koturbash I, Zemp FJ, Kutanzi K, et al. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle, 2008, 7(11):1658-1667.
    [18] Ilnytskyy Y, Zemp FJ, Koturbash I, et al. Altered mieroRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun, 2008, 377(1):41-45.
    [19] Svoboda M, Izakovicova Holla L, Sefr R, et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol, 2008, 33(3):541-547.
    [20] Little MP, Heidenreich WF, Moolgavkar SH, et al. Systems biological and mechanistic modelling of radiation-induced cancer. Radiat Environ Biophys, 2008, 47(1):39-47.
    [21] Koturbash I, Boyko A, Rodriguez-Juarez R, et al. Role of epigenetie effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis, 2007, 28(8):1831-1838.
  • [1] 李继涛何明远袁德晓沈波邵春林 . p53调控的能量代谢对辐射效应的影响. 国际放射医学核医学杂志, 2012, 36(6): 380-384. doi: 10.3760/cma.j.issn.1673-4114.2012.06.014
    [2] 肖瑶韩玲 . 电离辐射诱导旁效应的研究现状. 国际放射医学核医学杂志, 2007, 31(5): 303-306.
    [3] 闫风琴鞠桂芝 . 辐射及细胞因子对p21基因表达的调控作用. 国际放射医学核医学杂志, 2004, 28(6): 278-280.
    [4] 游洋郭海卓金顺子 . 微小RNA在电离辐射和肿瘤中的作用. 国际放射医学核医学杂志, 2009, 33(4): 243-245. doi: 10.3760/cma.j.issn.1673-4114.2009.04.016
    [5] 林向飞骆丹 . MDM2基因与肿瘤放射生物效应. 国际放射医学核医学杂志, 2007, 31(2): 118-121.
    [6] 郭睿李彪 . 早期生长反应基因1启动子介导肿瘤基因-放疗的研究进展. 国际放射医学核医学杂志, 2010, 34(4): 206-208, 219. doi: 10.3760/cma.j.issn.1673-4114.2010.04.004
    [7] 杨剑韩玲 . 脆性组氨酸三联体与细胞信号转导研究进展. 国际放射医学核医学杂志, 2007, 31(3): 173-175.
    [8] 史芳王芳 . ATM基因与AT细胞辐射敏感性的研究进展. 国际放射医学核医学杂志, 2007, 31(4): 248-250.
    [9] 王洗刘强 . 脑胶质瘤辐射敏感性相关基因的研究进展. 国际放射医学核医学杂志, 2008, 32(5): 311-313.
    [10] 张文成邓佳荣刘鑫张宏王治东沈丽萍 . 促癌基因SNORA72对结直肠癌细胞放射敏感性的作用研究. 国际放射医学核医学杂志, 2024, 48(2): 99-113. doi: 10.3760/cma.j.cn121381-202310003-00398
    [11] 王铭蔚王蕊衣峻萱金顺子 . Hippo信号通路的调控机制及其在肿瘤细胞辐射效应中作用的研究进展. 国际放射医学核医学杂志, 2022, 46(12): 765-772. doi: 10.3760/cma.j.cn121381-202204004-00250
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  135
  • PDF下载量:  2
出版历程
  • 收稿日期:  2008-12-17

微小RNAs在分子放射生物学中的研究进展

  • 苏州大学附属第一医院放疗科, 苏州 215006

摘要: 微小RNAs (miRNAs)是一类新近发现的能调节基因表达的短小非编码RNA.miRNAs通过负性调节靶基因,在辐射诱导的凋亡、辐射耐受性、旁观者效应等辐射反应中起重要作用.越来越多的证据表明,miRNAs与放射治疗所致的辐射生物效应相关.miRNAs有可能成为改善放射治疗肿瘤疗效的潜在新靶点.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回