18F-FDG PET分子显像在淋巴瘤中的应用进展

廖思锶 赵晋华

引用本文:
Citation:

18F-FDG PET分子显像在淋巴瘤中的应用进展

    通讯作者: 赵晋华, zhaojinhua1963@126.com

Application progress of non-18F-FDG PET molecular imaging in lymphoma

    Corresponding author: Jinhua Zhao, zhaojinhua1963@126.com
  • 摘要: 淋巴瘤是一种起源于淋巴结和淋巴组织的免疫系统恶性肿瘤,具有起病隐匿、侵袭性强等特点,是我国发病率增速最快的肿瘤之一。目前,18F-FDG PET/CT已经成为恶性淋巴瘤初始分期、再分期、早期治疗反应及疗效评估、预后预测与随访的重要影像技术。由于淋巴瘤的异质性,如侵袭性、组织来源、免疫表型、病程阶段、不同人群治疗反应等的差异,非18F-FDG PET显像技术在一些特定类型淋巴瘤的靶向诊疗中表现出较18F-FDG PET/CT更明显的优势。笔者聚焦于非18F-FDG PET分子显像在淋巴瘤中的研究进展,比较了非18F-FDG显像剂与传统显像剂18F-FDG在淋巴瘤诊疗过程中的异同、优势与不足、应用特色和发展潜能,期望为淋巴瘤特异性靶向诊疗和个性化精准医疗提供新的思路和方法。
  • [1] El-Galaly TC, Villa D, Gormsen LC, et al. FDG-PET/CT in the management of lymphomas: current status and future directions[J]. J Intern Med, 2018, 284(4): 358−376. DOI: 10.1111/joim.12813.
    [2] Ricard F, Cheson B, Barrington S, et al. Application of the Lugano classification for initial evaluation, staging, and response assessment of Hodgkin and Non-Hodgkin lymphoma: the PRoLoG consensus initiative (Part 1-Clinical)[J]. J Nucl Med, 2023, 64(1): 102−108. DOI: 10.2967/jnumed.122.264106.
    [3] 中华医学会核医学分会. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)[J]. 中华核医学与分子影像杂志, 2021, 41(3): 161−169. DOI: 10.3760/cma.j.cn321828-20210129-00018.
    Chinese Society of Nuclear Medicine. Clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2021, 41(3): 161−169. DOI: 10.3760/cma.j.cn321828-20210129-00018.
    [4] 卫毛毛, 刘卫平, 袁婷婷, 等. 18F-FDG PET/CT早期诊断淋巴瘤治疗相关心脏毒性的应用[J]. 中华核医学与分子影像杂志, 2021, 41(11): 653−659. DOI: 10.3760/cma.j.cn321828-20200722- 00291.
    Wei MM, Liu WP, Yuan TT, et al. Application of 18F-FDG PET/CT in early detection of therapy-associated cardiotoxicity in patients with lymphoma[J]. Chin J Nucl Med Mol Imaging, 2021, 41(11): 653−659. DOI: 10.3760/cma.j.cn321828-20200722- 00291.
    [5] Gallamini A, Kurlapski M, Zaucha JM. FDG-PET/CT for the management of post-chemotherapy residual mass in Hodgkin lymphoma[J/OL]. Cancers (Basel), 2021, 13(16): 3952[2023-08-28]. https://www.mdpi.com/2072-6694/13/16/3952. DOI: 10.3390/cancers13163952.
    [6] 乔文礼, 赵晋华. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)解读与展望[J]. 中华核医学与分子影像杂志, 2022, 42(4): 193−195. DOI: 10.3760/cma.j.cn321828-20220314-00070.
    Qiao WL, Zhao JH. Interpretation and prospect of clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2022, 42(4): 193−195. DOI: 10.3760/cma.j.cn321828-20220314-00070.
    [7] Alderuccio JP, Kuker RA, Yang F, et al. Quantitative PET-based biomarkers in lymphoma: getting ready for primetime[J]. Nat Rev Clin Oncol, 2023, 20(9): 640−657. DOI: 10.1038/s41571-023-00799-2.
    [8] 乔文礼, 牛家华, 金文雅, 等. 自体干细胞移植前或后18F-FDG PET/CT显像及相关因素对经典霍奇金淋巴瘤预后的评估价值[J]. 中华核医学与分子影像杂志, 2020, 40(3): 147−152. DOI: 10.3760/cma.j.cn321828-20190729-00149.
    Qiao WL, Niu JH, Jin WY, et al. Prognostic value of 18F-FDG PET/CT imaging and related factors for patients with classic Hodgkin lymphoma before or after autologous stem cell transplantation[J]. Chin J Nucl Med Mol Imaging, 2020, 40(3): 147−152. DOI: 10.3760/cma.j.cn321828-20190729-00149.
    [9] Nikaki A, Papadopoulos V, Valotassiou V, et al. Evaluation of the performance of 18F-fluorothymidine positron emission tomography/computed tomography (18F-FLT-PET/CT) in metastatic brain lesions[J/OL]. Diagnostics (Basel), 2019, 9(1): 17[2023-08-28]. https://www.mdpi.com/2075-4418/9/1/17. DOI: 10.3390/diagnostics9010017.
    [10] Wang RM, Zhu HY, Chen YM, et al. Standardized uptake value based evaluation of lymphoma by FDG and FLT PET/CT[J]. Hematol Oncol, 2014, 32(3): 126−132. DOI: 10.1002/hon.2093.
    [11] Sachpekidis C, Goldschmidt H, Kopka K, et al. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging[J/OL]. EJNMMI Res, 2018, 8(1): 28[2023-08-28]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-018-0383-7. DOI: 10.1186/s13550-018-0383-7.
    [12] Zanoni L, Broccoli A, Lambertini A, et al. Role of 18F-FLT PET/CT in suspected recurrent or residual lymphoma: final results of a pilot prospective trial[J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1661−1671. DOI: 10.1007/s00259-019-04323-6.
    [13] He Q, Zhang LQ, Zhang B, et al. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma[J/OL]. BMC Cancer, 2019, 19(1): 332[2023-08-28]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5560-1. DOI: 10.1186/s12885-019-5560-1.
    [14] Ahn SY, Kwon SY, Jung SH, et al. Prognostic significance of interim 11C-methionine PET/CT in primary central nervous system lymphoma[J]. Clin Nucl Med, 2018, 43(8): e259−e264. DOI: 10.1097/RLU.0000000000002154.
    [15] Tsuchiya J, Yamamoto M, Bae H, et al. Tumor identification of less aggressive or indolent lymphoma with whole-body 11C-acetate PET/CT[J]. Clin Nucl Med, 2019, 44(4): 276−281. DOI: 10.1097/RLU.0000000000002464.
    [16] Rieger K, De Filippi R, Lindén O, et al. 90-yttrium-ibritumomab Tiuxetan as first-line treatment for follicular lymphoma: updated efficacy and safety results at an extended median follow-up of 96 years[J]. Ann Hematol, 2022, 101(4): 781−788. DOI: 10.1007/s00277-022-04781-3.
    [17] Lugtenburg PJ, Zijlstra JM, Doorduijn JK, et al. Rituximab-PECC induction followed by 90Y-ibritumomab tiuxetan consolidation in relapsed or refractory DLBCL patients who are ineligible for or have failed ASCT: results from a phase Ⅱ HOVON study[J]. Br J Haematol, 2019, 187(3): 347−355. DOI: 10.1111/bjh.16087.
    [18] Rylova SN, Del Pozzo L, Klingeberg C, et al. Immuno-PET imaging of CD30-positive lymphoma using 89Zr-desferrioxamine-labeled CD30-specific AC-10 antibody[J]. J Nucl Med, 2016, 57(1): 96−102. DOI: 10.2967/jnumed.115.162735.
    [19] Altunay B, Morgenroth A, Beheshti M, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1371−1389. DOI: 10.1007/s00259-020-05094-1.
    [20] Buck AK, Serfling SE, Lindner T, et al. CXCR4-targeted theranostics in oncology[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4133−4144. DOI: 10.1007/s00259-022-05849-y.
    [21] Albano D, Dondi F, Bertagna F, et al. The role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in lymphoma: a systematic review[J/OL]. Cancers (Basel), 2022, 14(15): 3814[2023-08-28]. https://www.mdpi.com/2072-6694/14/15/3814. DOI: 10.3390/cancers14153814.
    [22] Duell J, Krummenast F, Schirbel A, et al. Improved primary staging of marginal-zone lymphoma by addition of CXCR4-directed PET/CT[J]. J Nucl Med, 2021, 62(10): 1415−1421. DOI: 10.2967/jnumed.120.257279.
    [23] Luo YP, Cao XX, Pan QQ, et al. 68Ga-pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenström Macroglobulinemia/Lymphoplasmacytic lymphoma: comparison to 18F-FDG PET/CT[J]. J Nucl Med, 2019, 60(12): 1724−1729. DOI: 10.2967/jnumed.119.226134.
    [24] Chen ZY, Yang AP, Zhang JY, et al. CXCR4-directed PET/CT with [68Ga]Pentixafor in central nervous system lymphoma: a comparison with [18F]FDG PET/CT[J]. Mol Imaging Biol, 2022, 24(3): 416−424. DOI: 10.1007/s11307-021-01664-3.
    [25] Volpe A, Nagle VL, Lewis JS, et al. Predicting CAR-T cell Immunotherapy success through ImmunoPET[J]. Clin Cancer Res, 2021, 27(4): 911−912. DOI: 10.1158/1078-0432.CCR-20-4297.
    [26] Simonetta F, Alam IS, Lohmeyer JK, et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET[J]. Clin Cancer Res, 2021, 27(4): 1058−1068. DOI: 10.1158/1078-0432.CCR-20-2770.
    [27] 汪静. FAPI有望开创核素靶向诊疗的新时代[J]. 中华核医学与分子影像杂志, 2021, 41(12): 705−708. DOI: 10.3760/cma.j.cn321828-20211102-00380.
    Wang J. FAPI will lead to a new era for radionuclide theranostics[J]. Chin J Nucl Med Mol Imaging, 2021, 41(12): 705−708. DOI: 10.3760/cma.j.cn321828-20211102-00380.
    [28] Dendl K, Koerber SA, Kratochwil C, et al. FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis?[J/OL]. Cancers (Basel), 2021, 13(19): 4946[2023-08-28]. https://www.mdpi.com/2072-6694/13/19/4946. DOI: 10.3390/cancers13194946.
    [29] Lan LJ, Liu HX, Wang YW, et al. The potential utility of [68Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent—comparison with [18F]FDG[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 963−979. DOI: 10.1007/s00259-021-05522-w.
    [30] Jin X, Wei MM, Wang SL, et al. Detecting fibroblast activation proteins in lymphoma using 68Ga-FAPI PET/CT[J]. J Nucl Med, 2022, 63(2): 212−217. DOI: 10.2967/jnumed.121.262134.
    [31] Chen XT, Wang SL, Lai YM, et al. Fibroblast activation protein and glycolysis in lymphoma diagnosis: comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT[J]. J Nucl Med, 2023, 64(9): 1399−1405. DOI: 10.2967/jnumed.123.265530.
    [32] Gagliardi M, Ashizawa AT. Making sense of antisense oligonucleotide therapeutics targeting Bcl-2[J/OL]. Pharmaceutics, 2022, 14(1): 97[2023-08-28]. https://www.mdpi.com/1999-4923/14/1/97. DOI: 10.3390/pharmaceutics14010097.
    [33] Liu DF, Xia Q, Ding D, et al. Radiolabeling of functional oligonucleotides for molecular imaging[J/OL]. Front Bioeng Biotechnol, 2022, 10: 986412[2023-08-28]. https://www.frontiersin.org/articles/10.3389/fbioe.2022.986412/full. DOI: 10.3389/fbioe.2022.986412.
    [34] McKay MJ, Taubman KL, Foroudi F, et al. Molecular imaging using PET/CT for radiation therapy planning for adult cancers: current status and expanding applications[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 783−791. DOI: 10.1016/j.ijrobp.2018.03.013.
    [35] Yang Q, Luo YP, Zhang Y, et al. Baseline [18F]FDG PET/CT may predict the outcome of newly diagnosed follicular lymphoma in patients managed with initial "watch-and-wait" approach[J]. Eur Radiol, 2022, 32(8): 5568−5576. DOI: 10.1007/s00330-022-08624-7.
    [36] Pan QQ, Cao XX, Luo YP, et al. Chemokine receptor 4-targeted 68Ga-pentixafor PET/CT in response assessment of Waldenström Macroglobulinemia/Lymphoplasmacytic lymphoma: comparison to 18F-FDG PET/CT[J]. Clin Nucl Med, 2021, 46(9): 732−737. DOI: 10.1097/RLU.0000000000003760.
    [37] Mayerhoefer ME, Raderer M, Lamm W, et al. CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: comparison with [18F]FDG-PET[J/OL]. Theranostics, 2021, 11(2): 567−578[2023-08-28]. https://www.thno.org/v11p0567.htm. DOI: 10.7150/thno.48620.
    [38] Sharda E, Patel RS, Juárez-Salcedo LM, et al. Adverse events of radioimmunotherapy for non-Hodgkin lymphoma: a systematic review and meta-analysis[J]. Leuk Res, 2021, 108: 106615. DOI: 10.1016/j.leukres.2021.106615.
  • [1] 郑玉民颜珏18F-氟脱氧葡萄糖PET在恶性淋巴瘤中的应用. 国际放射医学核医学杂志,
    [2] 段钰邓小虎徐迟峰周海中 . 面部原发性外周T细胞淋巴瘤-非特指型18F-FDG PET/CT显像一例. 国际放射医学核医学杂志, doi: 10.3760/cma.j.issn.1673-4114.2017.06.014
    [3] 萨日赵红光关锋林承赫18F-FDG PET/CT在弥漫性大B细胞淋巴瘤疗效评价中的临床价值. 国际放射医学核医学杂志, doi: 10.3760/cma.j.issn.1673-4114.2013.01.003
    [4] 欧蕾张春银18F-FDG PET在原发性乳腺淋巴瘤诊疗中的应用进展. 国际放射医学核医学杂志, doi: 10.3760/cma.j.cn121381-202004037-00033
    [5] 苏玉林王梓延宋姝朱高红 . 基于18F-FDG PET VCAR有效预测淋巴瘤诊疗效能的最新进展. 国际放射医学核医学杂志, doi: 10.3760/cma.j.cn121381-202003031-00032
    [6] 丁晓芳肖晓燕柳江燕 . PET/CT在结外NK/T细胞淋巴瘤诊治中的应用进展. 国际放射医学核医学杂志, doi: 10.3760/cma.j.cn121381-202012013-00111
    [7] 陆东燕丁恩慈胡天鹏沈婕18F-FDG PET/CT在继发性肾淋巴瘤与肾脏免疫性疾病鉴别诊断中的价值. 国际放射医学核医学杂志, doi: 10.3760/cma.j.cn121381-202103019-00149
    [8] 尤阳轩昂张杰付畅孙萌萌徐俊玲 . 淋巴瘤患者大脑静息葡萄糖代谢改变. 国际放射医学核医学杂志, doi: 10.3760/cma.j.issn.1673-4114.2016.04.003
    [9] 赵德善乔振华18F-氟脱氧葡萄糖PET-CT在淋巴瘤中的应用价值. 国际放射医学核医学杂志,
    [10] 李倩刘建军18F-FDG PET-CT评价淋巴瘤疗效及预后的价值. 国际放射医学核医学杂志, doi: 10.3760/cma.j.issn.1673-4114.2011.04.006
  • 加载中
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  959
  • PDF下载量:  2
出版历程
  • 收稿日期:  2023-08-29
  • 网络出版日期:  2024-04-24

18F-FDG PET分子显像在淋巴瘤中的应用进展

    通讯作者: 赵晋华, zhaojinhua1963@126.com
  • 上海交通大学医学院附属第一人民医院核医学科,上海 200080

摘要: 淋巴瘤是一种起源于淋巴结和淋巴组织的免疫系统恶性肿瘤,具有起病隐匿、侵袭性强等特点,是我国发病率增速最快的肿瘤之一。目前,18F-FDG PET/CT已经成为恶性淋巴瘤初始分期、再分期、早期治疗反应及疗效评估、预后预测与随访的重要影像技术。由于淋巴瘤的异质性,如侵袭性、组织来源、免疫表型、病程阶段、不同人群治疗反应等的差异,非18F-FDG PET显像技术在一些特定类型淋巴瘤的靶向诊疗中表现出较18F-FDG PET/CT更明显的优势。笔者聚焦于非18F-FDG PET分子显像在淋巴瘤中的研究进展,比较了非18F-FDG显像剂与传统显像剂18F-FDG在淋巴瘤诊疗过程中的异同、优势与不足、应用特色和发展潜能,期望为淋巴瘤特异性靶向诊疗和个性化精准医疗提供新的思路和方法。

English Abstract

  • 淋巴瘤是最早发现的免疫系统恶性肿瘤之一,其发生主要与免疫应答过程中淋巴细胞增殖分化产生的免疫细胞的某种恶变有关,按组织病理学改变可分为霍奇金淋巴瘤(Hodgkin lymphoma,HL)和非霍奇金淋巴瘤(non-Hodgkin lymphoma,NHL)。18F-FDG通过示踪葡萄糖的摄取和磷酸化过程,可灵敏地显示机体中葡萄糖酵解水平较高的肿瘤组织,是目前临床上应用最广泛的代谢显像剂。18F-FDG PET/CT是目前临床使用最普遍的淋巴瘤显像技术,在淋巴瘤的诊疗决策,包括识别CT漏诊的肿瘤区域以实现准确分期、预测化疗患者的预后并确定可在巩固放疗中获益的患者中发挥着关键作用[1]。目前国际公认的淋巴瘤影像分期和疗效评价标准Lugano分类[2]强调了18F-FDG PET/CT显像的关键作用,推荐18F-FDG PET/CT作为所有18F-FDG摄取增高的淋巴瘤患者影像分期的“金标准”和NHL患者治疗中期和治疗结束后疗效评价的重要手段[3]18F-FDG PET/CT显像在早期诊断淋巴瘤标准化疗导致的治疗相关心脏不良反应方面也具有一定的效能,可辅助临床医师调整治疗方案,尽量避免疾病进入心脏失代偿期[4]

    尽管18F-FDG PET/CT在淋巴瘤诊疗的各个阶段均发挥重要作用,但其也存在一些不足:(1)非恶性病变,如肉芽肿性炎症、化疗后淋巴样增生、脂肪坏死等均摄取18F-FDG,这可能导致肿瘤的分期产生误差或出现假阳性结果,影响18F-FDG PET/CT对淋巴瘤的预测价值;(2)18F-FDG PET/CT的诊断效能易受多种因素的干扰,如显像时患者的血糖水平、肿瘤的组织病理学亚型、实际的治疗方案等;(3)预测患者生存情况的肿瘤代谢体积(MTV)和病灶糖酵解总量(TLG),用于疗效评价的治疗前后SUVmax的下降值等重要的半定量分析参数缺乏标准化的检测规范与针对其效能的进一步的前瞻性试验的验证结果;(4)18F-FDG PET/CT对HL患者干细胞移植前后、中期治疗反应及预后等的评估效果较好,但对大部分NHL患者的评估效能缺乏充分的研究结果进行证明;(5)18F-FDG PET/CT在治疗后完全缓解的淋巴瘤患者的常规随访和疾病监测中没有明确的作用[1-2,5-8]

    PET/CT为淋巴瘤提供了一种动态的、个性化的诊疗手段,其面临的挑战在于如何更加精准地实现淋巴瘤的特异性靶向诊疗,即根据患者特点(年龄、健康状况、病程进展阶段、治疗反应)和肿瘤生物学特征(基因组、蛋白表达与分子表型、免疫微环境)制定更有针对性的诊疗策略。因此,越来越多的研究聚焦于非18F-FDG PET分子显像,研究人员探索通过非18F-FDG PET/CT或PET/MRI实现淋巴瘤靶向诊疗的优化方案。本文聚焦于其他生化代谢显像、放射免疫显像、受体显像等非18F-FDG PET分子显像技术在淋巴瘤中的显像特点和研究进展,探讨非18F-FDG显像剂的潜在应用价值,以期为淋巴瘤在核医学领域的基础研究和临床诊疗提供新的思路。

    • 18F-FDG仅可反映细胞代谢的一个方面,即葡萄糖代谢,其所提供的肿瘤代谢信息并不完整。核酸、氨基酸、脂肪酸、氧等的代谢显像可以从不同角度反映机体组织的代谢行为。18F-氟胸苷(18F-fluorothymidine,18F-FLT)是一种较为理想的反映肿瘤细胞增殖状态的核酸代谢显像剂,18F-FLT在DNA合成过程中被血清胸苷激酶磷酸化并在有增殖能力的细胞中大量聚集,这使其成为表征肿瘤细胞增殖情况的特异性显像剂[9]。Wang等[10]分别使用18F-FLT和18F-FDG对114例经组织病理学检查确诊的淋巴瘤患者行PET/CT显像,计算所有可见病灶的SUVmax和SUVmean,并统计所有可见病灶的SUV与该区域SUV的比值。研究结果表明,在大多数组织病理学类型的淋巴瘤患者中,18F-FLT与18F-FDG的摄取并无明显的相关性。侵袭性淋巴瘤和惰性淋巴瘤对18F-FDG的摄取有明显差异,18F-FLT PET/CT可作为18F-FDG PET/CT检测惰性淋巴瘤病变区域的一种补充显像方式。18F-FLT PET/CT对侵袭性恶性淋巴瘤的诊疗具有独特的优势。研究结果表明,在弥漫性大B细胞淋巴瘤(DLBCL)的治疗反应评估中,在治疗早中期阶段,18F-FLT PET/CT对DLBCL的阳性预测值显著高于18F-FDG PET/CT,而18F-FLT PET/CT对DLBCL的阴性预测值与18F-FDG PET/CT相似[11]18F-FLT PET/CT显像存在信噪比较低、本底摄取活性较高、灵敏度较低等问题,但其特异度较高,为肿瘤特异性示踪剂提供了新的选择。与18F-FDG相比,18F-FLT对评估复发或治疗后残留的淋巴瘤无明显优势,且目前尚不能单独作为显像剂在临床中使用。因此,其应用可能仅限于少数特定的病例,用于淋巴瘤的确诊或确定更好的淋巴瘤活检位点,可作为18F-FDG PET/CT显像的补充[12]。蛋氨酸是一种人体必需的α-氨基酸,其能够通过血脑屏障参与氨基酸的主动转运和蛋白质的合成,当正常脑组织主要以葡萄糖作为代谢底物时,11C-蛋氨酸(11C-Methionine,11C-MET)作为示踪剂行PET显像时检测脑肿瘤的灵敏度更高[13]。与11C-MET PET/CT相比,正常脑组织摄取18F-FDG更多,因此18F-FDG PET/CT对颅内肿瘤的评估存在一定的局限性,11C-MET PET/CT可以提供重要的补充信息,如11C-MET PET/CT有利于监测原发性中枢神经系统淋巴瘤(primary central nervous system lymphoma,PCNSL)患者对全身化疗的治疗反应,中期11C-MET PET/CT可以预测PCNSL患者的治疗效果[14]。Tsuchiya等[15]通过前瞻性研究发现,与18F-FDG PET/CT相比,11C-醋酸PET/CT对侵袭性较弱或惰性淋巴瘤具有更高的检测灵敏度,因此其有望作为一种生理示踪剂用于此类病变的研究。

    • 作为非侵入性诊疗的重要手段,放射免疫显像(redioimmunoimaging,RII)和放射免疫治疗(radioimmunotherapy,RIT)的基本原理是将使用放射性核素标记的抗体注入人体,使其与靶抗原发生特异性结合,以实现显像或治疗的目的。靶向CD20抗原的单克隆抗体已被美国食品药物监督管理局批准用于治疗NHL、类风湿性关节炎、肉芽肿伴多血管炎(Wegener's肉芽肿病)和显微多血管炎等多种CD20高表达疾病的患者。靶向CD20的90Y-替伊莫单抗已被证明可用于NHL患者一线化疗后的巩固治疗,90Y-替伊莫单抗靶向RIT是CD20阳性复发性和(或)难治性NHL患者一种新的治疗方法[16]。研究结果表明,90Y-替伊莫单抗靶向RIT对于已经接受自体造血干细胞移植(ASCT)后残留少量肿瘤组织或不适合接受自体造血干细胞移植(ASCT)的高危NHL患者可能是一种不良反应较少且安全的巩固治疗方法[17]。靶向CD30的特异性抗体偶联物——维布妥昔单抗被批准用于治疗复发性和(或)难治性HL和全身间变性大T细胞淋巴瘤。不同类型淋巴瘤中CD30的表达存在差异,且其会随治疗过程发生变化,因此CD30靶向RII可能是对维布妥昔单抗治疗方案进行动态监测和特异性优化的有效工具。Rylova等[18]研究发现,靶向CD30的89Zr标记的特异性抗体(89Zr-desferrioxamine-labeled CD30-specific AC-10 antibody,89Zr-DFO-AC-10)是一种检测CD30表达水平的灵敏度较高的PET显像剂,其显像结果具有较高的T/NT,有望用于各种类型的淋巴瘤和其他高表达CD30疾病的监测和评估。单克隆抗体具有天然的高度特异性,有助于筛选适合特定的免疫治疗方案的患者,其在肿瘤靶向诊疗中已初步显示出良好的应用前景。但单克隆抗体也存在一定的局限性,如抗体的分子量较高可引起间质扩散受阻,血液分布不均,肾脏不易滤过,体内代谢时间长,血浆清除率低,必须使用半衰期较长的核素对其进行标记等。为了使显像剂具备更好的组织穿透性、更高的血浆清除率、更低的毒性,小抗体片段如亲和体、纳米抗体等应运而生,使RII和RIT的应用前景更加广阔[19]

    • C-X-C型趋化因子受体4(C-X-C chemokine receptor type 4,CXCR4)在各种肿瘤中的表达均上调,因此其已成为肿瘤诊疗的明星分子之一,可为肿瘤的分子成像和内放射治疗提供合适的靶点。CXCR4靶向的PET显像剂68Ga-PentixaFor及其等效治疗药物177Lu/90Y-PentixaTher在许多血液系统恶性肿瘤,如多发性骨髓瘤、边缘区淋巴瘤(marginal zone lymphoma,MZL)、套细胞淋巴瘤(mantle cell lymphoma,MCL)等的诊疗中发挥了一定的作用[20]。Albano等[21]68Ga-PentixaFor PET/CT和PET/MRI在淋巴瘤中的作用进行了分析,结果表明,在对18F-FDG PET显像灵敏度不高的淋巴瘤,如MZL、淋巴浆细胞淋巴瘤(lymphoplasmacytic lymphoma,LPL)、 慢性淋巴细胞白血病和中枢神经系统淋巴瘤(central nervous system lymphoma,CNSL)中,68Ga-PentixaFor PET/CT显像可取代18F-FDG PET/CT显像,且MCL和MZL患者摄取68Ga-PentixaFor的剂量最高。因此他们认为68Ga-PentixaFor PET/CT和PET/MRI是评估淋巴瘤分期和疗效的有用工具,其对淋巴瘤的诊断效能甚至优于18F-FDG PET/CT。Duell等[22]对22例首次确诊MZL的患者进行常规分期及行CXCR4靶向的68Ga-Pentixafor PET/CT显像进行分期,对68Ga-Pentixafor PET/CT检出的病灶进行活检,并作为参考标准,与影像学检查结果进行比较,以评估CXCR4靶向的PET/CT显像对首次确诊MZL的患者分期及治疗方案的影响。结果表明,68Ga-Pentixafor PET/CT 检出了MZL患者的所有病灶,并且检出率优于常规分期(P<0.001),之后PET引导下的活检结果验证了68Ga-Pentixafor PET/CT定性显像的结果。Waldenström巨球蛋白血症(Waldenström macroglobulinemia,WM)/LPL是一种主要累及骨髓的惰性B细胞淋巴瘤,患者B细胞中CXCR4的表达水平较高。Luo等[23]进行了一项前瞻性队列研究以评估68Ga-PentixaFor PET/CT对WM/LPL的诊断效能并与18F-FDG PET/CT进行比较,结果表明,在纳入的17例WM/LPL患者中,68Ga-Pentixafor PET/CT比18F-FDG PET/CT的检出率高(100% vs. 58.8%,P=0.023),二者检测髓旁受累病灶的灵敏度分别为94.1%和58.8%(P=0.077),68Ga-Pentixafor PET/CT比18F-FDG PET/CT检出了更多的中枢神经系统受累病灶,因此68Ga-Pentixafor PET/CT在评估WM/LPL方面有较好的发展前景。为了研究68Ga-Pentixafor PET/CT在CNSL患者化疗前、治疗期间和疑似复发中的检测效能,Chen等[24]对26例CNSL患者进行了回顾性分析,结果表明,21例患者68Ga-Pentixafor PET/CT显像的肿瘤与正常脑组织摄取比值较18F-FDG PET/CT明显提高(21.93±10.77 vs. 4.29±2.16, P<0.001),且68Ga-Pentixafor PET/CT在患者中期治疗评估时较18F-FDG PET/CT多检出5个病灶(P=0.026),CNSL病灶的CXCR4表达水平与68Ga-Pentixafor PET/CT的SUVmax相关(r=0.772,P<0.001),使用靶向CXCR4的68Ga-Pentixafor PET/CT具有良好的T/NT,因此68Ga-Pentixafor PET/CT可能比18F-FDG PET/CT更有望用于CNSL患者的常规病变检测。

      嵌合抗原受体T细胞疗法(chimeric antigen receptor T-cell therapy,CAR-T)在治疗难治性淋巴瘤方面取得了重大进展,但目前缺乏使CAR-T细胞可视化,实现实时观察治疗反应,且易于转化的显像方法。研究结果表明,非侵入性的PET显像是监测CAR-T细胞潜在的理想工具[25],但大多数CAR-T细胞示踪剂尚处于临床前研究阶段。Simonetta等[26]以T细胞激活标记物诱导性共刺激分子(inducible costimulator,ICOS)作为体内监测CAR-T细胞的潜在靶点,并首次使用放射性标记螯合剂-抗体偶联物89Zr-DFO-ICOS PET无创监测全身B细胞淋巴瘤同基因模型中的小鼠CD19-28z CAR-T细胞。

    • 尽管肿瘤细胞的生物学行为和生物标志物具有高度异质性,但肿瘤微环境的特征比较相似,因此靶向肿瘤微环境的广谱分子探针具有一定的发展前景。肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)与肿瘤细胞的侵袭,血管的生成、生长以及不良预后相关。成纤维细胞活化蛋白(fibro-blast activating protein,FAP)在大多数CAFs中过表达,靶向FAP的新型放射性示踪剂成纤维细胞活化蛋白抑制剂(fibro-blast activating protein inhibitor,FAPI)在正常组织中较少被摄取,T/NT更高,且可以较快地从血浆中清除,提高了检测的灵敏度[27-28]。研究结果表明,68Ga-DOTA-FAPI-04在临床上可作为用于肿瘤和炎症PET显像的广谱显像剂,尤其适用于各种实体瘤和非肿瘤性病变的显像[29]。一项前瞻性研究使用68Ga-FAPI-04 PET/CT显像检测不同组织病理学亚型淋巴瘤的FAP,用以量化68Ga-FAPI-04 PET/CT在淋巴结病灶和结外病灶中的显像结果。研究结果显示,在纳入的73例淋巴瘤患者(11例HL,62例NHL)中,HL患者病灶对FAPI的摄取明显升高,且与FAP免疫染色的程度相关。侵袭性NHL患者病灶对68Ga-FAPI的摄取呈中度至重度升高,FAP免疫染色程度为中度至重度;惰性NHL患者病灶对68Ga-FAPI的摄取呈轻至中度升高,FAP染色程度为轻度至中度。因此,68Ga-FAPI显像可能是监测淋巴瘤病变的另一种方法,68Ga-FAPI-04 PET/CT有利于分析淋巴瘤中FAP的表达情况,而且HL和侵袭性NHL患者的肿瘤间质中可能含有比惰性NHL患者更多的CAFs[30]。虽然68Ga-FAPI PET/CT显像对FAP低表达淋巴瘤患者的诊断准确率低于18F-FDG PET/CT显像,但其可以作为18F-FDG PET/CT显像的补充,有助于揭示淋巴瘤的分子特征[31]

      反义基因技术是指根据核酸杂交原理,设计抑制特定基因表达的反义核酸序列。在NHL患者中,B细胞淋巴瘤-2(B-cell lymphoma-2,BCL-2)基因的过度表达与抑制细胞凋亡和促进肿瘤生长密切相关。最早的BCL-2反义基因治疗使用靶向BCL-2 mRNA开放读码框的反义寡核苷酸抑制BCL-2表达阳性的复发性NHL患者BCL-2基因的表达,使患者的症状、血液生化和放射影像检查结果得到明显改善[32]。反义显像是将针对特定靶序列的反义核酸进行放射性核素标记后引入人体内,用以快速定位特异靶基因并对靶基因进行定量分析,可显示过度表达靶基因的肿瘤组织。理论上,使用放射性核素标记反义寡核苷酸可以对人体内靶基因的表达进行无创显像,并可预测基因治疗的反应[33]。选择并确定理想的寡核苷酸序列,提高探针在人体内的稳定性,提高靶细胞对放射性核素标记反义寡核苷酸的选择性摄取和该反义显像剂在靶组织内的滞留等问题是制约反义基因显像发展的重要因素。目前相关研究的开展受到限制,缺乏进一步的研究和临床转化。

    • 18F-FDG PET/CT能够使人体内葡萄糖酵解率较高的肿瘤组织可视化,可以通过“一站式”显像发现淋巴瘤患者全身所有受侵犯的病灶(包括区域性淋巴结和结外器官),并对其进行分期、再分期,疗效监测与预后评价。在诸多侵袭性淋巴瘤中,18F-FDG PET/CT已经得到临床应用。近年的研究结果表明,基线18F-FDG PET/CT可以帮助医师更好地选择病程缓慢且常被认为不可治愈的滤泡性淋巴瘤(follicular lymphoma,FL)患者中最有可能受益的患者,以优化无症状、低肿瘤负荷的FL患者的整体治疗计划。18F-FDG PET/CT显像可预测部分惰性B细胞淋巴瘤转化为DLBCL的倾向并指导活检[2, 34-35]18F-FDG PET/CT对肿瘤的诊断效能因肿瘤部位、组织病理学类型、免疫表型和分化程度等不同而存在差异,非18F-FDG的其他代谢显像、受体显像、放射免疫显像等PET分子显像技术具有适应肿瘤异质性的靶向诊疗潜能。对于MCL和WM/LPL患者,靶向CXCR4的68Ga-pentixafor PET/CT比18F-FDG PET/CT显示出更高的检出率和更好的T/NT[36-37]。靶向CD20的RIT对于复发和(或)难治性NHL患者可能是一种新的有效的治疗方法,但相关不良反应必须引起重视,如第二种肿瘤的出现(急性髓系白血病或骨髓增生异常综合征)[38]。FAP通常在细胞外基质的重塑过程中被发现,因此可以在伤口的愈合组织和良性病变(如慢性炎症、关节炎、纤维化和心肌梗死后的缺血性心脏组织等)中检测到,但相关机制目前尚不明确[28]。因此,尽管一些非18F-FDG显像剂对一些患有特定类型淋巴瘤的患者具有更好的诊断特异度和靶向性,相关研究也日益受到关注,但由于目前尚缺乏具体的、可参考的诊疗标准,有效性和安全性评价,其临床应用受到一定限制,目前尚处于临床试验阶段。目前,非18F-FDG PET显像仅作为18F-FDG PET/CT显像的补充,预计未来将有更多研究关注非18F-FDG PET分子显像对淋巴瘤的靶向诊疗作用,使其与18F-FDG PET/CT显像优势互补,以期不断调整、优化淋巴瘤患者的诊疗方案,实现分子水平的精准医疗。

      利益冲突 所有作者声明无利益冲突

      作者贡献声明 廖思锶负责综述命题的提出与撰写;赵晋华负责综述的指导与审阅

参考文献 (38)

目录

    /

    返回文章
    返回