PET/CT在原发性甲状旁腺亢进症术前定位中的应用价值及其术前定位影像学新进展

赵宇嘉 白侠

引用本文:
Citation:

PET/CT在原发性甲状旁腺亢进症术前定位中的应用价值及其术前定位影像学新进展

    通讯作者: 白侠, libaiqiangxia@163.com

Application value of PET/CT in preoperative localization of primary hyperparathyroidism and new advances in preoperative localization imaging

    Corresponding author: Xia Bai, libaiqiangxia@163.com
  • 摘要: 原发性甲状旁腺功能亢进症(PHPT)是一种常见的内分泌疾病,通常由甲状旁腺功能亢进引起。手术切除功能亢进的病灶是治疗PHPT的主要手段,正确定位病灶对于指导PHPT患者的微创手术治疗至关重要。PET/CT目前已经成为甲状旁腺腺瘤术前定位的一线影像学手段,而如何从血清生化水平筛选出适合行PET/CT的患者成为临床应用的重点,从组织病理学和免疫组化水平分析其与PET相关参数的关系也是目前研究的热点。笔者主要就PHPT患者的血清生化水平、组织病理学信息、免疫组化与PET/CT相关参数之间的关系进行分析,并介绍了PHPT术前定位的影像学新进展,以期为PET/CT的临床应用提供指导。
  • [1] Walker MD, Silverberg SJ. Primary hyperparathyroidism[J]. Nat Rev Endocrinol, 2018, 14(2): 115−125. DOI: 10.1038/nrendo.2017.104.
    [2] 李秀梅, 李军, 王宏桥, 等. 高频超声、超声造影与99mTc-MIBI SPECT/CT在难治性甲状旁腺功能亢进术前定位中的比较[J/OL]. 中华医学超声杂志(电子版), 2018, 15(7): 522−529[2023-01-29]. https://d.wanfangdata.com.cn/periodical/zhyxcszz201807010. DOI: 10.3877/cma.j.issn.1672-6448.2018.07.010.
    Li XM, Li J, Wang HQ, et al. Localization value of ultrasonography, contrast-enhanced ultrasound and 99mTc-MIBI SPECT/CT in refractory secondary hyperparathyroidism[J/OL]. Chin J Med Ultrasound: Electron Ed, 2018, 15(7): 522−529[2023-01-29]. https://d.wanfangdata.com.cn/periodical/zhyxcszz201807010. DOI: 10.3877/cma.j.issn.1672-6448.2018.07.010.
    [3] Ruda JM, Hollenbeak CS, Stack BC Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003[J]. Otolaryngol Head Neck Surg, 2005, 132(3): 359−372. DOI: 10.1016/j.otohns.2004.10.005.
    [4] Bossert I, Chytiris S, Hodolic M, et al. PETC/CT with 18F-Choline localizes hyperfunctioning parathyroid adenomas equally well in normocalcemic hyperparathyroidism as in overt hyperparathyroidism[J]. J Endocrinol Invest, 2019, 42(4): 419−426. DOI: 10.1007/s40618-018-0931-z.
    [5] Giovanella L, Bacigalupo L, Treglia G, et al. Will 18F-fluorocholine PET/CT replace other methods of preoperative parathyroid imaging?[J]. Endocrine, 2021, 71(2): 285−297. DOI: 10.1007/s12020-020-02487-y.
    [6] Reeder SB, Desser TS, Weigel RJ, et al. Sonography in primary hyperparathyroidism: review with emphasis on scanning technique[J]. J Ultrasound Med, 2002, 21(5): 553−554. DOI: 10.7863/jum.2002.21.5.539.
    [7] Batur A, Atmaca M, Yavuz A, et al. Ultrasound elastography for distinction between parathyroid adenomas and thyroid nodules[J]. J Ultrasound Med, 2016, 35(6): 1277−1282. DOI: 10.7863/ultra.15.07043.
    [8] Bleier BS, Livolsi VA, Chalian AA, et al. Technetium Tc 99m sestamibi sensitivity in oxyphil cell-dominant parathyroid adenomas[J]. Arch Otolaryngol Head Neck Surg, 2006, 132(7): 779−782. DOI: 10.1001/archotol.132.7.779.
    [9] Kuzminski SJ, Sosa JA, Hoang JK. Update in parathyroid imaging[J]. Magn Reson Imaging Clin N Am, 2018, 26(1): 151−166. DOI: 10.1016/j.mric.2017.08.009.
    [10] Carpentier A, Jeannotte S, Verreault J, et al. Preoperative localization of parathyroid lesions in hyperparathyroidism: relationship between technetium-99m-MIBI uptake and oxyphil cell content[J]. J Nucl Med, 1998, 39(8): 1441−1444.
    [11] Hoang JK, Williams K, Gaillard F, et al. Parathyroid 4D-CT: multi-institutional international survey of use and trends[J]. Otolaryngol Head Neck Surg, 2016, 155(6): 956−960. DOI: 10.1177/0194599816655311.
    [12] Liddy S, Worsley D, Torreggiani W, et al. Preoperative imaging in primary hyperparathyroidism: literature review and recommendations[J]. Can Assoc Radiol J, 2017, 68(1): 47−55. DOI: 10.1016/j.carj.2016.07.004.
    [13] Treglia G, Trimboli P, Huellner MW, et al. Imaging in primary hyperparathyroidism: focus on the evidence-based diagnostic performance of different methods[J]. Minerva Endocrinol, 2018, 43(2): 133−143. DOI: 10.23736/S0391-1977.17.02685-2.
    [14] Piccardo A, Bottoni G, Boccalatte LA, et al. Head-to-head comparison among 18F-choline PET/CT, 4D contrast-enhanced CT, and 18F-choline PET/4D contrast-enhanced CT in the detection of hyperfunctioning parathyroid glands: a systematic review and meta-analysis[J]. Endocrine, 2021, 74(2): 404−412. DOI: 10.1007/s12020-021-02798-8.
    [15] Boccalatte LA, Higuera F, Gómez NL, et al. Usefulness of 18F-fluorocholine positron emission tomography-computed tomography in locating lesions in hyperparathyroidism: a systematic review[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(8): 743−750. DOI: 10.1001/jamaoto.2019.0574.
    [16] Sacconi B, Argirò R, Diacinti D, et al. MR appearance of parathyroid adenomas at 3 T in patients with primary hyperparathyroidism: what radiologists need to know for pre-operative localization[J]. Eur Radiol, 2016, 26(3): 664−673. DOI: 10.1007/s00330-015-3854-5.
    [17] Mahajan A, Starker LF, Ghita M, et al. Parathyroid four-dimensional computed tomography: evaluation of radiation dose exposure during preoperative localization of parathyroid tumors in primary hyperparathyroidism[J]. World J Surg, 2012, 36(6): 1335−1339. DOI: 10.1007/s00268-011-1365-3.
    [18] Strauss SB, Roytman M, Phillips CD. Parathyroid imaging: four-dimensional computed tomography, sestamibi, and ultrasonography[J]. Neuroimaging Clin N Am, 2021, 31(3): 379−395. DOI: 10.1016/j.nic.2021.04.007.
    [19] Hofer T, Kronbichler J, Huber H, et al. 18F-Choline PET/CT, MRI, and software-based image fusion analysis in patients with primary hyperparathyroidism[J]. Clin Nucl Med, 2021, 46(9): 710−716. DOI: 10.1097/RLU.0000000000003738.
    [20] Huber GF, Hüllner M, Schmid C, et al. Benefit of 18F-fluorocholine PET imaging in parathyroid surgery[J]. Eur Radiol, 2018, 28(6): 2700−2707. DOI: 10.1007/s00330-017-5190-4.
    [21] Alharbi AA, Alshehri FM, Albatly AA, et al. [18F]Fluorocholine uptake of parathyroid adenoma is correlated with parathyroid hormone level[J]. Mol Imaging Biol, 2018, 20(5): 857−867. DOI: 10.1007/s11307-018-1179-x.
    [22] Grimaldi S, Young J, Kamenicky P, et al. Challenging pre-surgical localization of hyperfunctioning parathyroid glands in primary hyperparathyroidism: the added value of 18F-fluorocholine PET/CT[J]. Eur J Nucl Med Mol Imaging, 2018, 45(10): 1772−1780. DOI: 10.1007/s00259-018-4018-z.
    [23] Evangelista L, Ravelli I, Magnani F, et al. 18F-choline PET/CT and PET/MRI in primary and recurrent hyperparathyroidism: a systematic review of the literature[J]. Ann Nucl Med, 2020, 34(9): 601−619. DOI: 10.1007/s12149-020-01507-1.
    [24] Treglia G, Piccardo A, Imperiale A, et al. Diagnostic performance of choline PET for detection of hyperfunctioning parathyroid glands in hyperparathyroidism: a systematic review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 751−765. DOI: 10.1007/s00259-018-4123-z.
    [25] Bioletto F, Barale M, Parasiliti-Caprino M, et al. Comparison of the diagnostic accuracy of 18F-fluorocholine PET and 11C-methionine PET for parathyroid localization in primary hyperparathyroidism: a systematic review and meta-analysis[J]. Eur J Endocrinol, 2021, 185(1): 109−120. DOI: 10.1530/EJE-21-0038.
    [26] Petranović Ovčariček P, Giovanella L, Carrió Gasset I, et al. The EANM practice guidelines for parathyroid imaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2801−2822. DOI: 10.1007/s00259-021-05334-y.
    [27] Hindié E, Zanotti-Fregonara P, Tabarin A, et al. The role of radionuclide imaging in the surgical management of primary hyperparathyroidism[J]. J Nucl Med, 2015, 56(5): 737−744. DOI: 10.2967/jnumed.115.156018.
    [28] Piccardo A, Trimboli P, Rutigliani M, et al. Additional value of integrated 18F-choline PET/4D contrast-enhanced CT in the localization of hyperfunctioning parathyroid glands and correlation with molecular profile[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 766−775. DOI: 10.1007/s00259-018-4147-4.
    [29] Araz M, Soydal Ç, Özkan E, et al. The efficacy of fluorine-18-choline PET/CT in comparison with 99mTc-MIBI SPECT/CT in the localization of a hyperfunctioning parathyroid gland in primary hyperparathyroidism[J]. Nucl Med Commun, 2018, 39(11): 989−994. DOI: 10.1097/MNM.0000000000000899.
    [30] Kluijfhout WP, Vorselaars WMCM, van den Berk SAM, et al. Fluorine-18 fluorocholine PET-CT localizes hyperparathyroidism in patients with inconclusive conventional imaging: a multicenter study from the Netherlands[J]. Nucl Med Commun, 2016, 37(12): 1246−1252. DOI: 10.1097/MNM.0000000000000595.
    [31] Gatu A, Velicescu C, Grigorovici A, et al. The volume of solitary parathyroid adenoma is related to preoperative Pth and 25OH-D3, but not to calcium levels[J]. Acta Endocrinol (Buchar), 2017, 13(4): 441−446. DOI: 10.4183/aeb.2017.441.
    [32] Liberini V, Morand GB, Rupp NJ, et al. Histopathological features of parathyroid adenoma and 18F-choline uptake in PET/MR of primary hyperparathyroidism[J]. Clin Nucl Med, 2022, 47(2): 101−107. DOI: 10.1097/RLU.0000000000003987.
    [33] Ferrari C, Santo G, Mammucci P, et al. Diagnostic value of choline PET in the preoperative localization of hyperfunctioning parathyroid gland(s): a comprehensive overview[J]. Biomedicines, 2021, 9(3): 231. DOI: 10.3390/biomedicines9030231.
    [34] Zajíčková K, Zogala D, Kubinyi J. Parathyroid imaging by 18F-fluorocholine PET/CT in patients with primary hyperparathyroidism and inconclusive conventional methods: clinico-pathological correlations[J]. Physiol Res, 2018, 67(S3): S551−557. DOI: 10.33549/physiolres.934029.
    [35] Tomita T. Immunocytochemical staining patterns for parathyroid hormone and chromogranin in parathyroid hyperplasia, adenoma, and carcinoma[J]. Endocr Pathol, 1999, 10(2): 145−156. DOI: 10.1007/BF02739826.
    [36] Kluijfhout WP, Pasternak JD, Gosnell JE, et al. 18F fluorocholine PET/MR imaging in patients with primary hyperparathyroidism and inconclusive conventional imaging: a prospective pilot study[J]. Radiology, 2017, 284(2): 460−467. DOI: 10.1148/radiol.2016160768.
  • [1] 彭诗瑶李盼丽张艾米刘秋芳徐莲孙晓光黄钢宋少莉99Tcm-MIBI SPECT/CT融合断层显像在甲状旁腺功能亢进症中的应用价值. 国际放射医学核医学杂志, 2018, 42(3): 195-200. doi: 10.3760/cma.j.issn.1673-4114.2018.03.001
    [2] 吴娇娇严颖卫华 . 放射性核素显像在甲状旁腺功能亢进症诊断中的研究进展. 国际放射医学核医学杂志, 2023, 47(8): 503-508. doi: 10.3760/cma.j.cn121381-202211001-00326
    [3] 王剑杰张滨马潞娜田智勇18F-FDG PET/CT 对急性白血病骨髓移植术后髓内复发灶的诊断价值. 国际放射医学核医学杂志, 2021, 45(8): 486-494. doi: 10.3760/cma.j.cn121381-202010022-00089
    [4] 刘岩薛建军王岐许惠丁蕊娜闫青丹高蕊杨爱民 . 不同肾脏深度估算公式校正SPECT/CT肾动态显像对计算活体肾移植供者GFR的影响. 国际放射医学核医学杂志, 2023, 47(9): 525-530. doi: 10.3760/cma.j.cn121381-202210024-00340
    [5] 成钊汀陈璟朱小华 . 甲状旁腺癌双肺多发转移99Tcm-MIBI SPECT/CT显像一例. 国际放射医学核医学杂志, 2017, 41(4): 303-304. doi: 10.3760/cma.j.issn.1673-4114.2017.04.013
    [6] 王静朱玉春蔡国强周伟秦海峰周青章斌 . 甲状旁腺病灶重量对99Tcm-MIBI显像诊断灵敏度的影响. 国际放射医学核医学杂志, 2020, 44(6): 352-358. doi: 10.3760/cma.j.cn121381-201903012-00037
    [7] 赵惠扬 . 放射性核素计算机处理断层摄影术. 国际放射医学核医学杂志, 1979, 3(1): 36-41.
    [8] 谢玉洁岳殿超 . 多种影像学技术在甲状旁腺功能亢进症术前定位和诊断中的应用进展. 国际放射医学核医学杂志, 2021, 45(1): 47-53. doi: 10.3760/cma.j.cn121381-201911029-00004
    [9] 苏舒唐刚华向贤宏聂大红 . 肝纤维化分子显像的研究进展. 国际放射医学核医学杂志, 2017, 41(4): 265-270. doi: 10.3760/cma.j.issn.1673-4114.2017.04.006
    [10] 朱虹静董爱生左长京 . 放射性核素显像在肾肿瘤诊断中的应用. 国际放射医学核医学杂志, 2021, 45(1): 41-46. doi: 10.3760/cma.j.cn121381-202004035-00008
    [11] 张元丽李慧敏郭小闪 . 核医学显像在心脏淀粉样变性中的应用进展. 国际放射医学核医学杂志, 2023, 47(6): 372-377. doi: 10.3760/cma.j.cn121381-202208014-00308
  • 加载中
计量
  • 文章访问数:  2118
  • HTML全文浏览量:  1790
  • PDF下载量:  13
出版历程
  • 收稿日期:  2023-01-30
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-04-25

PET/CT在原发性甲状旁腺亢进症术前定位中的应用价值及其术前定位影像学新进展

    通讯作者: 白侠, libaiqiangxia@163.com
  • 1. 内蒙古医科大学第一临床医学院,呼和浩特 010050
  • 2. 内蒙古医科大学附属医院核医学科,内蒙古自治区分子影像学重点实验室,呼和浩特 010050

摘要: 原发性甲状旁腺功能亢进症(PHPT)是一种常见的内分泌疾病,通常由甲状旁腺功能亢进引起。手术切除功能亢进的病灶是治疗PHPT的主要手段,正确定位病灶对于指导PHPT患者的微创手术治疗至关重要。PET/CT目前已经成为甲状旁腺腺瘤术前定位的一线影像学手段,而如何从血清生化水平筛选出适合行PET/CT的患者成为临床应用的重点,从组织病理学和免疫组化水平分析其与PET相关参数的关系也是目前研究的热点。笔者主要就PHPT患者的血清生化水平、组织病理学信息、免疫组化与PET/CT相关参数之间的关系进行分析,并介绍了PHPT术前定位的影像学新进展,以期为PET/CT的临床应用提供指导。

English Abstract

  • 甲状旁腺常位于甲状腺的背侧,当其机能亢进时,会表现为血磷水平降低而血钙水平增高,骨的钙盐被过分吸收,导致骨质疏松及钙盐沉积于其他器官。原发性甲状旁腺功能亢进症(primary hyperparathyroidism,PHPT)多由单个甲状旁腺腺瘤引起,其诊断基于生化检测,表现为血钙水平升高、甲状旁腺激素(parathyroid hormone,PTH)水平正常或升高,伴不同程度的骨质疏松症和病理性骨折、肾功能不全等[1]。治疗PHPT的主要手段是手术切除功能亢进的甲状旁腺组织,精准切除病灶后,可有效缓解上述症状。但由于甲状旁腺与甲状腺及胸腺的位置很近,而且有血管、淋巴管和神经穿行进入,因此手术的成败及术后复发率取决于术前病灶的精确定位[2],目前临床中常见的PHPT患者多以甲状旁腺腺瘤为主,笔者将以甲状旁腺腺瘤为主要研究对象进行综述。

    • 目前PHPT患者术前定位多采用超声和SPECT/CT相结合的方法,Ruda等[3]认为,虽然超声和99Tcm-MIBI SPECT/CT对于甲状旁腺腺瘤的定位较为准确,但对于双腺瘤诊断的灵敏度较低。最近的研究结果显示,18F-氟胆碱(fluorocholine,FCH)PET/CT 在甲状旁腺术前定位方面的表现优于颈部超声和99Tcm-MIBI SPECT/CT[4-5]。除此之外,还有四维计算机断层扫描(four-dimensional computed tomography,4DCT)、MRI、PET/MRI可用于PHPT患者术前的影像学定位。

    • 增生性甲状旁腺或腺瘤性甲状旁腺在超声图像中通常表现为椭圆形或类圆形的低回声区域,伴有清晰的回声包膜。当使用彩色超声或多普勒成像时,甲状旁腺腺瘤通常出现“极性供支血管征”[6]。甲状旁腺超声检查是目前临床中用于PHPT术前定位成本最低的成像方式,患者还可免于暴露于电离辐射下。然而甲状旁腺腺瘤的非典型部位,如甲状腺内的腺瘤,仍然是超声检查中的一个难题,而且超声对多腺体疾病和再手术病例的诊断灵敏度也有限。

      超声弹性成像是一种量化组织硬度的方法,该方法目前常用于乳腺、肝脏、胰腺、前列腺、甲状腺实质和病变的评估。其在进行甲状旁腺病灶成像时,对区分甲状旁腺腺瘤与甲状腺结节或增生性甲状旁腺有一定的帮助[7]。但这项技术应用于临床时受到了限制,主要表现在弹性操作对临床和手术结果影响的不确定性。

    • SPECT/CT是目前临床用于术前定位PHPT病灶的一线影像方法[6]。异常甲状旁腺的检测取决于局部99Tcm-MIBI摄取的增加和因为腺瘤细胞内线粒体数目的增加表现出的显像剂的长期滞留,在临床中通常将SPECT/CT与超声相结合,检测超声不易发现的异位腺体[7],从而提高对病灶的识别能力。99Tcm-MIBI是目前应用最广泛的甲状旁腺显像剂,其是一种亲脂性阳离子复合物,可以聚集在各种代谢活跃组织的线粒体中,包括甲状腺、心脏、肝脏、唾液腺和异常的甲状旁腺[6]。在PHPT患者中,由于线粒体数量的增加,99Tcm-MIBI易积聚在极度活跃的甲状旁腺中,同时,99Tcm-MIBI的摄取还取决于细胞周期、甲状旁腺血供、毛细血管通透性等情况和血钙水平及P-糖蛋白表达水平等[8]99Tcm-MIBI SPECT/CT对PHPT具有良好的诊断效能,检出率为86%~88%[9]。虽然SPECT与CT的结合增加了患者所受的辐射剂量,但可以提供显像部位的解剖学信息,有助于分辨病灶位置。99Tcm-MIBI的局限性主要与其较低的空间分辨率及PHPT患者较低的靶本比(target background ratio,TBR)有关,并且99Tcm产生的低能γ射线在胸骨和胸腔会产生衰减,因此检测异位于纵隔的腺瘤也有一定的困难。

    • PHPT患者行4DCT扫描的典型特征是扫描中的极性血管表现为一个增大的血管进入细长的甲状旁腺的一端[10],这一特征有助于鉴别功能亢进的甲状旁腺组织与甲状腺及淋巴结[11]。4DCT在定位单个腺体病灶时显示出较高的灵敏度(88%~92%),而在定位多腺体病灶时,其灵敏度显著降低(43%~69%)[12]

      但一些研究结果显示,在手术切除率方面,4DCT与SPECT和超声联合之间没有显著差异[3, 10]。4DCT的主要优点是可以对功能亢进的甲状旁腺进行精确的解剖定位。4DCT是一种基于腺瘤与周围组织灌注动力学的功能与解剖学检查,但其对多腺体病灶及甲状旁腺内的病灶的诊断灵敏度也较低,且其辐射剂量较高。

    • 近几年,PET/CT检查已成为了定位PHPT病灶的二线影像方法,PET/CT技术可以显著提高影像的空间分辨率、病灶噪声比,降低胸腔和胸骨的衰减,因此PET/CT可以检出最大径<1 cm的甲状旁腺病灶[13-14],与SPECT相比,其可以显著提高病灶定位的灵敏度和特异度。目前用于甲状旁腺腺瘤术前定位的显像剂有18F-FDG、11C-胆碱(choline,CHO)、18F-CHO,临床上常用的是11C-CHO和18F-CHO。其应用的主要机制是由于肿瘤细胞及腺瘤细胞的细胞膜转化率较高,对CHO的需求也增多,我们可以通过11C或18F对CHO进行放射性标记从而显像。因为高能γ射线在胸骨和胸腔的衰减小于99Tcm发出的γ射线[15],所以,与SPECT相比,PET可以检测出纵隔腺瘤,这对于异位甲状旁腺腺瘤的定位有明显价值,特别是对于SPECT/CT无法准确定位、分辨的合并有甲状腺疾病的患者。目前,PET/CT主要用于一线影像方法检查结果为阴性或超声和SPECT/CT结果不一致的患者,但对于其具体使用情况还没有明确的要求。

    • 甲状旁腺腺瘤和增生性甲状旁腺在T2WI图像上表现为高信号,通常被描述为“大理石纹”[16]。在T1WI图像上,甲状旁腺病变通常表现为中等至低信号[17]。MRI可用于因辐射无法接受CT和PET/CT检查的患者,尤其是患儿和孕妇。MRI在甲状旁腺病变应用中的局限性为:甲状旁腺病变的影像特征与淋巴结和甲状腺结节相比缺乏特异性,因为大多数MRI序列在总体采集中缺乏时间分辨率,从而导致成像淋巴结和甲状腺结节通常具有相似的信号特征。同时,早期应用MRI检测甲状旁腺易受到空间分辨率低、与吞咽有关的运动伪影以及周围脂肪组织的限制。但动态对比增强MRI的应用使甲状旁腺病变与淋巴结和甲状腺结节的鉴别诊断准确率达到96%,而且其通过化学伪影改善了脂肪饱和度,改进了时间分辨技术,从而提高了诊断甲状旁腺病灶的特异度。而且MRI中3-T磁铁的使用增加了信噪比和对比噪声比,也提高了MRI对甲状旁腺病灶诊断的灵敏度[18]

      随着微创手术的应用,我们需要有更精确、有针对性的术前定位方法,PET与MRI的图像融合有助于更精确的解剖定位[19]。目前我们需要更多的前瞻性研究来评估PET/MRI在超声和SPECT/CT结果不明确的患者中的表现。 PET/MRI不仅辐射剂量比SPECT/CT和PET/CT小,而且其对甲状旁腺腺瘤的检测也具有较高的灵敏度,阳性预测值为90%。因此,在PHPT常规成像结果为阴性或不确定的患者中,PET/MRI进行腺瘤定位的结果通常较为准确。PET/MRI作为PHPT患者的二线影像检查方法,对于一线影像检查方法定位结果不确定的患者具有明显的定位价值,有助于甲状旁腺微创切除术的成功进行,可以有效降低手术风险[10]。然而,只有少数机构可以提供PET/MRI设备,目前该设备主要应用于肿瘤学领域[19]

    • 对PHPT患者行影像检查的目的是定位病灶,从而行甲状旁腺腺瘤切除术。PET具有比SPECT更高的空间和时间分辨率[9],可以提高诊断的灵敏度和特异度[18],有些研究者也强调了PET/CT或PET/MRI在超声和SPECT/CT结果为阴性或诊断结果不一致的患者中的价值[9, 20-25]。2021欧洲核医学协会程序指南推荐PET/CT作为PHPT患者的一线影像检查方法[26]

      与此同时,PET/CT已经被证明在诊断增生、多发性或异位腺瘤甚至在家族性PHPT中有很好的表现[27]。Bossert等[4]分析了PET/CT在血钙水平正常PHPT患者中的潜在作用,即PET可以作为识别正常血钙或高钙血症PHPT患者的一线影像检查方法。作为PHPT的一线影像检查方法,PET/CT的应用将越来越广泛,但其显像剂的制备要求较为严格且检查费用相对较高,因此,如何根据已知的临床及影像结果为PET/CT选择更加合适的患者是我们研究的重点。

    • PHPT的特征是高钙血症和PTH血清水平升高或出现异常,但部分PHPT患者的血清水平正常。通过肿瘤细胞或腺瘤细胞对放射性标记CHO的摄取,PET/CT可以作为鉴别血清水平正常的PHPT患者与高钙血症患者病理性甲状旁腺的一线影像检查技术[14]

      以往的研究结果显示,PET相关参数与PHPT患者的血钙、PTH水平有关[28]。但最近的研究结果表明,基于SUV、代谢状态、临床状况和分子组成之间的相关性评估得出了不一致的结论。Grimaldi等[22]和Araz等[29]得出结论,病灶的SUVmax与患者的临床血清生化水平不存在相关性;而Kluijfhout等[30]则认为PTH水平升高与SUV存在相关性;Piccardo等[28]证明了钙尿症与SUV显著相关,但与PTH水平无关,SUVratio(SUV比率)与钙水平呈正相关。Gatu等[31]报道,甲状旁腺腺瘤体积似乎与术前PTH和25(OH)D3有关,但与血钙水平无关。虽然目前PET参数与生化指标之间关系的结论不一致,但研究人员普遍认为血钙水平与PET结果阳性及SUVmax具有相关性,这一结果具有临床意义,因为高血钙这一特征是选择手术患者的主要因素[23,31-32]

    • 关于甲状旁腺腺瘤摄取放射性CHO示踪剂的原因,一些研究者[33-34]假设主细胞和嗜酸细胞/嗜氧细胞都有双重CHO摄取机制,肿瘤细胞或腺瘤细胞因为细胞膜转化率增高,对CHO的需求也增多,CHO带正电荷,通过膜转运体可进入所有甲状旁腺细胞[32],因此磷脂类似物18F-CHO可以与近期合成的增殖细胞膜结合从而显像。一些研究结果显示,腺瘤中不同的组织病理学类型都会导致PTH水平升高[35-36]。在甲状旁腺腺瘤中,已经证明磷脂依赖性CHO激酶的上调是由PTH的水平升高引起的,这两种机制可能都与功能亢进的甲状旁腺摄取放射性CHO显像剂有关[28]

      与此同时,CHO显像显示甲状旁腺腺瘤对显像剂的摄取与所使用的同位素无关,这说明CHO具有特异的摄取机制[34]。但目前尚未发现CHO示踪剂的摄取程度与腺瘤背景TBR有相关性[30]。甲状旁腺腺瘤摄取CHO示踪剂可能与腺瘤组织的生长模式和腺瘤的体积有关,呈滤泡生长方式的组织所占腺瘤的比例与早期显像和延迟显像SUVmax均呈显著正相关,呈小梁生长方式的组织的早期显像和延迟显像的SUVmax均较低。

      因所有腺瘤都会导致PTH水平升高,与它们的细胞类型组成无关,所以PET参数与甲状旁腺腺瘤的细胞类型无相关性。CHO摄取与细胞类型的潜在关联尚不清楚,需要行进一步的研究。

    • PHPT是由甲状旁腺肿瘤引起的,甲状旁腺肿瘤通常作为非家族性孤立性内分泌疾病发生,也被称为散发性(非综合征性)PHPT。在散发性PHPT中,单个甲状旁腺腺瘤更为常见。散发性PHPT可能是遗传性的,即家族性孤立性甲状旁腺功能亢进症;也可能是由于多发性内分泌腺瘤病1型(MEN1)、CDC73基因或钙敏感受体(CaSR)突变所致。到目前为止,对PHPT的研究结果显示,PHPT的发病可能涉及11个基因的遗传异常。但大多数PHPT患者的遗传机制尚不清楚,鉴于散发性甲状腺腺瘤的相似性,我们认为调节细胞周期的基因及其表达的相关蛋白,尤其是细胞周期蛋白D1(CCND1)和MEN1,对PHPT术前定位有重要影响[1]

      目前关于PET/CT相关参数与甲状旁腺腺瘤免疫相关的研究较少,目前已知的分子途径显示,p35和细胞增殖核抗原(Ki-67)的表达可能与甲状旁腺腺瘤的发生有关。Piccardo等[28]评估了SUVmax与甲状旁腺病变中Ki-67和p53表达之间的关系,发现SUVratio(SUV比率)与Ki-67正相关,CHO摄取与p53表达负相关。目前,这一研究领域仍有许多不确定性,但将免疫与影像学相结合,也为我们日后寻找适合行PET/CT的患者提供了新思路。

    • PHPT的发病率在世界各地逐年上升[1],随着PHPT微创手术的开展,术前精准的影像学定位对于手术的顺利进行十分重要,PET/CT凭借较高的空间分辨率和特异性显像剂的优势已经超越了传统的PHPT影像学定位方法。关于如何挑选出更适合行PET/CT的患者,避免医疗资源的浪费并为患者提供及时的治疗,国内外进行了很多相关研究,关于PET参数和血清生化、代谢水平得出了不同的结论[23]。其原因一方面可能与部分研究是回顾性分析有关,在这些研究中部分患者并未行甲状旁腺腺瘤切除术,因此无法获得其组织病理学结果,并且并不是所有患者切除的组织都是有意义的,可能出现假阴性结果。另一方面可能因为不同研究中血钙和PTH水平的测定采用的参考值不同,在收集分析数据时对结果产生了影响。就这个问题,我们可以采用血清钙和甲状旁腺素水平的比率来降低误差,而不是仅仅就各生化水平的数值进行分析。但综合来看,我们可以认为血钙及PTH水平升高,特别是合并有甲状腺疾病的患者可以作为目前适合行PET/CT的主要人群。目前PET/CT常作为临床一线影像定位的补充方法,当PHPT患者合并甲状腺疾病时,SPECT/CT并不能准确地分辨和定位病灶的位置,而PET/CT较高的空间分辨率可以更好地分辨甲状旁腺与甲状腺病灶,同时也能发现潜在的恶性疾病。

      与此同时,甲状旁腺腺瘤的发病机制尚不明确,但关于甲状旁腺腺瘤与遗传学的研究进展、免疫组化与PET相关参数的研究结果显示,SUVratio(SUV比率)与Ki-67正相关,CHO摄取与p53表达负相关,但因为目前散发性甲状旁腺腺瘤的遗传机制不太明确,这一研究领域仍有很多不确定性。此外,正如一项关于99Tcm-MIBI用于PHPT成像的研究所发现的那样,Ki-67在所有经组织病理学结果证实的甲状旁腺腺瘤中的表达都相对较低[14]。我们可以推测,随着时间的推移,18F-CHO PET/CT可以识别代谢活跃的病灶,这些病变可能与患者的生化水平和组织病理学特征相关,有助于早期发现病灶,早期治疗。

      PET/CT目前已经成为甲状旁腺腺瘤定位的一线影像方法,它不仅可以在超声和SPECT/CT结果为阴性或不确定时起到重要的作用,通过4DCT 或MRI与PET/CT的联合使用,还可以进一步提高诊断效能。目前,虽然临床上对PHPT病灶定位的方法仍以超声和99Tcm-MIBI SPECT/CT联合为主,但随着PET/CT的不断普及和研究,其在PHPT中的应用具有较好的前景。与此同时,PET与MRI的结合可以弥补PET/CT软组织分辨率较低的缺点,随着PET/MRI的逐渐普及,它也将在甲状旁腺腺瘤的术前定位中发挥较好的作用。

      利益冲突 所有作者声明无利益冲突

      作者贡献声明 赵宇嘉负责综述的撰写;白侠负责综述的审阅

参考文献 (36)

目录

    /

    返回文章
    返回