神经内分泌肿瘤核医学显像剂的研究进展

刘炳楠 王颖 要少波

引用本文:
Citation:

神经内分泌肿瘤核医学显像剂的研究进展

    通讯作者: 要少波, yaoshaobo008@163.com

Research progress of nuclear medicine imaging tracers for neuroendocrine neoplasma

    Corresponding author: Shaobo Yao, yaoshaobo008@163.com
  • 摘要: 核医学显像作为无创性功能影像检查手段,在神经内分泌肿瘤诊断中发挥着重要作用。核医学显像的关键点在于分子靶向探针,目前已报道用于神经内分泌肿瘤显像的核医学分子探针可分为靶向生长抑素受体类和其他类,其中,靶向生长抑素受体类显像剂又可分为生长抑素受体激动剂和拮抗剂。笔者对用于神经内分泌肿瘤诊断的核医学显像剂进行综述。
  • [1] Rindi G, Klimstra DS, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal[J]. Mod Pathol, 2018, 31(12): 1770−1786. DOI: 10.1038/s41379-018-0110-y.
    [2] Garcia-Carbonero R, Sorbye H, Baudin E, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas[J]. Neuroendocrinology, 2016, 103(2): 186−194. DOI: 10.1159/000443172.
    [3] Malla S, Kumar P, Madhusudhan KS, et al. Radiology of the neuroendocrine neoplasms of the gastrointestinal tract: a comprehensive review[J/OL]. Abdom Radiol (NY), 2020, 9: 32960304[2019-06-09]. https://link.springer.com/article/10.1007/s00261-020-02773-3. DOI: 10.1007/s00261-020-02773-3.
    [4] Abdel-Rahman O. A real-world, population-based study for the incidence and outcomes of neuroendocrine neoplasms of unknown primary[J/OL]. Neuroendocrinology, 2020, 9: 32980845[2019-06-09]. https://www.karger.com/Article/Abstract/511812. DOI: 10.1159/000511812.
    [5] Cuccurullo V, Prisco MR, Di Stasio GD, et al. Nuclear medicine in patients with NET: radiolabeled somatostatin analogues and their brothers[J]. Curr Radiopharm, 2017, 10(2): 74−84. DOI: 10.2174/1874471010666170323115136.
    [6] Papotti M, Bongiovanni M, Volante M, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis[J]. Virchows Arch, 2002, 440(5): 461−475. DOI: 10.1007/s00428-002-0609-x.
    [7] Eychenne R, Bouvry C, Bourgeois M, et al. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy[J/OL]. Molecules, 2020, 25(17): 4012[2019-06-09]. https://www.mdpi.com/1420-3049/25/17/4012. DOI: 10.3390/molecules25174012.
    [8] Heppeler A, Froidevaux S, Mäcke HR, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy[J]. Chem A Eur J, 1999, 5(7): 1974−1981. DOI: 10.1002/(SICI)1521-3765(19990702)5:7<1974::AID-CHEM1974>3.0.CO;2-X.
    [9] Asti M, De Pietri G, Fraternali A, et al. Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC[J]. Nucl Med Biol, 2008, 35(6): 721−724. DOI: 10.1016/j.nucmedbio.2008.04.006.
    [10] Eisenwiener KP, Prata MI, Buschmann I, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors[J]. Bioconjug Chem, 2002, 13(3): 530−541. DOI: 10.1021/bc010074f.
    [11] Yadav D, Ballal S, Yadav MP, et al. Evaluation of [68Ga]Ga-DATA-TOC for imaging of neuroendocrine tumours: comparison with [68Ga]Ga-DOTA-NOC PET/CT[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 860−869. DOI: 10.1007/s00259-019-04611-1.
    [12] Mansi R, Abid K, Nicolas GP, et al. A new 68Ga-labeled somatostatin analog containing two iodo-amino acids for dual somatostatin receptor subtype 2 and 5 targeting[J/OL]. EJNMMI Res, 2020, 10(1): 90[2019-06-09]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-020-00677-3. DOI: 10.1186/s13550-020-00677-3.
    [13] Basu S, Parghane RV, Kamaldeep, et al. Peptide receptor radionuclide therapy of neuroendocrine tumors[J]. Semin Nucl Med, 2020, 50(5): 447−464. DOI: 10.1053/j.semnuclmed.2020.05.004.
    [14] James ML, Hoehne A, Mayer AT, et al. Imaging B cells in a mouse model of multiple sclerosis using 64Cu-rituximab PET[J]. J Nucl Med, 2017, 58(11): 1845−1851. DOI: 10.2967/jnumed.117.189597.
    [15] Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for neuroendocrine tumors: a prospective head-to-jead comparison with 111In-DTPA-octreotide in 112 patients[J]. J Nucl Med, 2015, 56(6): 847−854. DOI: 10.2967/jnumed.115.156539.
    [16] Wadas TJ, Eiblmaier M, Zheleznyak A, et al. Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors[J]. J Nucl Med, 2008, 49(11): 1819−1827. DOI: 10.2967/jnumed.108.054502.
    [17] Guo YJ, Ferdani R, Anderson CJ. Preparation and biological evaluation of 64Cu labeled Tyr3-octreotate using a phosphonic acid-based cross-bridged macrocyclic chelator[J]. Bioconjug Chem, 2012, 23(7): 1470−1477. DOI: 10.1021/bc300092n.
    [18] Paterson BM, Roselt P, Denoyer D, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate[J]. Dalton Trans, 2014, 43(3): 1386−1396. DOI: 10.1039/c3dt52647j.
    [19] Hostetler E, Edwards WB, Anderson CJ, et al. Synthesis of 4-[18F]fluorobenzyl octreotide and biodistribution in tumor-bearing Lewis rats[J]. J Labelled Comp Radiopharm, 1999, 42(suppl 1): S720−722.
    [20] Guhlke S, Wester HJ, Bruns C, et al. (2-[18F]fluoropropionyl-(D)-phe1)-octreotide, a potential radiopharmaceutical for quantitative somatostatin receptor imaging with PET: synthesis, radiolabeling, in vitro validation and biodistribution in mice[J]. Nucl Med Biol, 1994, 21(6): 819−825. DOI: 10.1016/0969-8051(94)90161-9.
    [21] Wester HJ, Schottelius M, Scheidhauer K, et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide[J]. Eur J Nucl Med Mol Imaging, 2003, 30(1): 117−122. DOI: 10.1007/s00259-002-1012-1.
    [22] Meisetschläger G, Poethko T, Stahl A, et al. Gluc-Lys-([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide[J]. J Nucl Med, 2006, 47(4): 566−573.
    [23] Schirrmacher E, Wängler B, Cypryk M, et al. Synthesis of p-(di-tert-butyl[18F]fluorosilyl)benzaldehyde ([18F]SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the 18F-labeling of N-amino-oxy derivatized peptides[J]. Bioconjug Chem, 2007, 18(6): 2085−2089. DOI: 10.1021/bc700195y.
    [24] Liu ZB, Pourghiasian M, Bénard F, et al. Preclinical evaluation of a high-affinity 18F-trifluoroborate octreotate derivative for somatostatin receptor imaging[J]. J Nucl Med, 2014, 55(9): 1499−1505. DOI: 10.2967/jnumed.114.137836.
    [25] Laverman P, McBride WJ, Sharkey RM, et al. A novel facile method of labeling octreotide with 18F-fluorine[J]. J Nucl Med, 2010, 51(3): 454−461. DOI: 10.2967/jnumed.109.066902.
    [26] Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors[J]. Clin Cancer Res, 2017, 23(16): 4617−4624. DOI: 10.1158/1078-0432.CCR-16-2743.
    [27] Seregni E, Maccauro M, Chiesa C, et al. Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy[J]. Eur J Nucl Med Mol Imaging, 2014, 41(2): 223−230. DOI: 10.1007/s00259-013-2578-5.
    [28] Vinjamuri S, Gilbert TM, Banks M, et al. Peptide receptor radionuclide therapy with 90Y-DOTATATE/90Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity[J]. Br J Cancer, 2013, 108(7): 1440−1448. DOI: 10.1038/bjc.2013.103.
    [29] Wang H, Cheng YJ, Zang JJ, et al. Response to single low-dose 177Lu-DOTA-EB-TATE treatment in patients with advanced neuroendocrine neoplasm: a rrospective pilot study[J/OL]. Theranostics, 2018, 8(12): 3308−3316[2019-06-09]. https://www.thno.org/v08p3308.htm. DOI: 10.7150/thno.25919.
    [30] Morgenstern A, Apostolidis C, Kratochwil C, et al. An overview of targeted alpha therapy with 225Actinium and 213Bismuth[J]. Curr Radiopharm, 2018, 11(3): 200−208. DOI: 10.2174/1874471011666180502104524.
    [31] Chan HS, Konijnenberg MW, Daniels T, et al. Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine[J/OL]. EJNMMI Res, 2016, 6(1): 83[2019-06-09]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-016-0240-5. DOI: 10.1186/s13550-016-0240-5.
    [32] Kratochwil C, Giesel FL, Bruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11): 2106−2119. DOI: 10.1007/s00259-014-2857-9.
    [33] Van Binnebeek S, Vanbilloen B, Baete K, et al. Comparison of diagnostic accuracy of 111In-pentetreotide SPECT and 68Ga-DOTATOC PET/CT: a lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours[J]. Eur Radiol, 2016, 26(3): 900−909. DOI: 10.1007/s00330-015-3882-1.
    [34] Kanzaki T, Takahashi Y, Higuchi T, et al. Evaluation of 111In-pentetreotide SPECT imaging correction for GEP-NET[J/OL]. J Nucl Med Technol, 2020, 9: 32887762[2019-06-09]. http://tech.snmjournals.org/content/48/4/326.long. DOI: 10.2967/jnmt.120.249680.
    [35] Hope TA, Calais J, Zhang L, et al. 111In-pentetreotide scintigraphy versus. 68Ga-DOTATATE PET: impact on Krenning scores and effect of tumor burden[J]. J Nucl Med, 2019, 60(9): 1266−1269. DOI: 10.2967/jnumed.118.223016.
    [36] Forrer F, Uusijärvi H, Waldherr C, et al. A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours[J]. Eur J Nucl Med Molec Imaging, 2004, 31(9): 1257−1262. DOI: 10.1007/s00259-004-1553-6.
    [37] Czepczyński R, Parisella MG, Kosowicz J, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2007, 34(10): 1635−1645. DOI: 10.1007/s00259-007-0479-1.
    [38] Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience[J]. Eur J Nucl Med Mol Imaging, 2006, 33(10): 1123−1133. DOI: 10.1007/s00259-006-0113-7.
    [39] Ginj M, Zhang HW, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors[J]. Proc Natl Acad Sci U S A, 2006, 103(44): 16436−16441. DOI: 10.1073/pnas.0607761103.
    [40] Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible[J]. J Nucl Med, 2011, 52(9): 1412−1417. DOI: 10.2967/jnumed.111.088922.
    [41] Cescato R, Erchegyi J, Waser B, et al. Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting[J]. J Med Chem, 2008, 51(13): 4030−4037. DOI: 10.1021/jm701618q.
    [42] Fani M, Del Pozzo L, Abiraj K, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference[J]. J Nucl Med, 2011, 52(7): 1110−1118. DOI: 10.2967/jnumed.111.087999.
    [43] Fani M, Braun F, Waser B, et al. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications[J]. J Nucl Med, 2012, 53(9): 1481−1489. DOI: 10.2967/jnumed.112.102764.
    [44] Nicolas GP, Beykan S, Bouterfa H, et al. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study[J]. J Nucl Med, 2018, 59(6): 909−914. DOI: 10.2967/jnumed.117.199737.
    [45] Nicolas GP, Schreiter N, Kaul F, et al. Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase Ⅱ imaging study[J]. J Nucl Med, 2018, 59(6): 915−921. DOI: 10.2967/jnumed.117.199760.
    [46] Krebs S, Pandit-Taskar N, Reidy D, et al. Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 677−685. DOI: 10.1007/s00259-018-4193-y.
    [47] Zhu WJ, Cheng YJ, Wang XZ, et al. Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study[J]. J Nucl Med, 2020, 61(6): 897−903. DOI: 10.2967/jnumed.119.235093.
    [48] Nicolas GP, Mansi R, McDougall L, et al. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect[J]. J Nucl Med, 2017, 58(9): 1435−1441. DOI: 10.2967/jnumed.117.191684.
    [49] 臧士明, 艾书跃, 姚晓晨, 等. 18F-FDG及68Ga-DOTA-NOC PET/CT对G3神经内分泌肿瘤的诊断比较[J]. 中华核医学与分子影像杂志, 2017, 37(4): 202−206. DOI: 10.3760/cma.j.issn.2095-2848.2017.04.003.
    Zang SM, Ai SY, Yao XC, et al. Comparison of 18F-FDG and 68Ga-DOTA-NOC PET/CT on the diagnosis of G3 neuroendocrine neoplasm[J]. Chin J Nucl Med Mol Imaging, 2017, 37(4): 202−206. DOI: 10.3760/cma.j.issn.2095-2848.2017.04.003.
    [50] von Falck C, Boerner AR, Galanski M, et al. Neuroendocrine tumour of the mediastinum: fusion of 18F-FDG and 68Ga-DOTATOC PET/CT datasets demonstrates different degrees of differentiation[J]. Eur J Nucl Med Mol Imaging, 2007, 34(5): 812. DOI: 10.1007/s00259-006-0350-9.
    [51] Conry BG, Papathanasiou ND, Prakash V, et al. Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2010, 37(1): 49−57. DOI: 10.1007/s00259-009-1204-z.
    [52] Ezziddin S, Adler L, Sabet A, et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system[J]. J Nucl Med, 2014, 55(8): 1260−1266. DOI: 10.2967/jnumed.114.137166.
    [53] Kotecka-Blicharz A, Hasse-Lazar K, Handkiewicz-Junak D, et al. 131I-MIBG therapy of malignant pheochromocytoma and paraganglioma tumours-a single-centre study[J]. Endokrynol Pol, 2018, 69(3): 246−251. DOI: 10.5603/EP.a2018.0024.
    [54] Xu D, Zhu W, Huo L, et al. Validation of Iodine-131-meta-iodobenzylguanidine cardiac scintigraphy in Parkinsonism: a preliminary study[J]. Parkinsonism Relat Disord, 2018, 50: 69−73. DOI: 10.1016/j.parkreldis.2018.02.020.
    [55] Saponjski J, Macut D, Sobic-Saranovic D, et al. Somatostatin receptor scintigraphy in the follow up of neuroendocrine neoplasms of appendix[J/OL]. World J Clin Cases, 2020, 8(17): 3697−3707[2019-06-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479554. DOI: 10.12998/wjcc.v8.i17.3697.
    [56] Streby KA, Shah N, Ranalli MA, et al. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy[J]. Pediatr Blood Cancer, 2015, 62(1): 5−11. DOI: 10.1002/pbc.25200.
    [57] Noordzij W, Glaudemans AWJM, Schaafsma M, et al. Adrenal tracer uptake by 18F-FDOPA PET/CT in patients with pheochromocytoma and controls[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1560−1566. DOI: 10.1007/s00259-019-04332-5.
    [58] Christiansen CD, Petersen H, Nielsen AL, et al. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation[J]. Eur J Nucl Med Mol Imaging, 2018, 45(2): 250−261. DOI: 10.1007/s00259-017-3867-1.
    [59] Koopmans KP, Neels OC, Kema IP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography[J]. J Clin Oncol, 2008, 26(9): 1489−1495. DOI: 10.1200/JCO.2007.15.1126.
    [60] Neels OC, Jager PL, Koopmans KP, et al. Development of a reliable remote-controlled synthesis of β-[11C]-5-hydroxy-L-tryptophan on a Zymark robotic system[J]. J Labelled Comp Radiopharm, 2006, 49(10): 889−895. DOI: 10.1002/jlcr.1110.
  • [1] 杨玲黄琦胡显文王攀 . 核素标记的生长抑素受体拮抗剂在神经内分泌肿瘤显像和治疗中的研究进展. 国际放射医学核医学杂志, 2022, 46(5): 309-315. doi: 10.3760/cma.j.cn121381-202105016-00175
    [2] 张敏何玉林王相成王雪梅11C标记的心脏交感神经受体显像剂的研究进展. 国际放射医学核医学杂志, 2023, 47(2): 105-111. doi: 10.3760/cma.j.cn121381-202208001-00274
    [3] 朱玫王荣福 . 放射性核素胃排空显像. 国际放射医学核医学杂志, 2000, 24(4): 152-154.
    [4] 张金山 . 放射性核素细胞凋亡显像. 国际放射医学核医学杂志, 2004, 28(1): 6-8,25.
    [5] 王曼 . 放射性核素显像在心力衰竭中的应用. 国际放射医学核医学杂志, 2002, 26(6): 268-270.
    [6] 袁瑛顾兆祥 . 放射性核素显像在轻度认知功能障碍中的应用价值. 国际放射医学核医学杂志, 2008, 32(4): 209-213.
    [7] 杜贵永朱兴建付绍祥李天兰 . 放射性核素显像诊断下肢深静脉血栓形成的临床研究. 国际放射医学核医学杂志, 2009, 33(6): 348-350. doi: 10.3760/cma.j.issn.1673-4114.2009.06.009
    [8] 郑玉民颜珏 . 放射性核素显像在甲状旁腺功能亢进症中的应用. 国际放射医学核医学杂志, 2011, 35(3): 170-175. doi: 10.3760/cma.j.issn.1673-4114.2011.03.009
    [9] 安淑娴宋少莉黄钢 . 放射性核素标记的凋亡显像剂的研究进展. 国际放射医学核医学杂志, 2015, 39(6): 470-477. doi: 10.3760/cma.j.issn.1673-4114.2015.06.008
    [10] 刘金剑刘鉴峰孟爱民 . 噬菌体展示技术在分子核医学中的应用. 国际放射医学核医学杂志, 2013, 37(6): 352-354,373. doi: 10.3760/cma.j.issn.1673-4114.2013.06.007
  • 加载中
计量
  • 文章访问数:  5316
  • HTML全文浏览量:  4135
  • PDF下载量:  27
出版历程
  • 收稿日期:  2019-06-10
  • 刊出日期:  2020-09-25

神经内分泌肿瘤核医学显像剂的研究进展

    通讯作者: 要少波, yaoshaobo008@163.com
  • 1. 天津医科大学总医院血液内科,300052
  • 2. 天津医科大学总医院PET/CT影像诊断科,300052

摘要: 核医学显像作为无创性功能影像检查手段,在神经内分泌肿瘤诊断中发挥着重要作用。核医学显像的关键点在于分子靶向探针,目前已报道用于神经内分泌肿瘤显像的核医学分子探针可分为靶向生长抑素受体类和其他类,其中,靶向生长抑素受体类显像剂又可分为生长抑素受体激动剂和拮抗剂。笔者对用于神经内分泌肿瘤诊断的核医学显像剂进行综述。

English Abstract

  • 神经内分泌肿瘤(neuroendocrine neoplasm,NEN)起源于肽能神经元和神经内分泌细胞,是从表现为惰性、缓慢生长的低度恶性到具有广泛转移能力的高度恶性的一系列异质性肿瘤。根据2010年世界卫生组织分级标准,NEN可分级为G1、G2、G3和混合性腺神经内分泌癌[1]。G1级和G2级肿瘤的分化程度良好,属于高分化神经内分泌瘤(neuroendocrine tumor,NET);而G3级肿瘤属于低分化神经内分泌癌(neuroendocrine carcinoma,NEC),其增殖活性更高,发生远端侵袭和转移的速度也更快[2]。NEN可发生于全身各部位,好发于胃肠道、胰腺和肺,约占95%以上[3]。NEN历来被认为是少见肿瘤,然而调查结果显示,NEN的发病率有升高趋势,由此受到越来越多的关注,如今已逐渐不再被认为是罕见病[4]。早期诊断对于及时有效地治疗NEN非常重要。与传统影像学检查获得特异部位的病理学形态资料不同,核医学功能成像能够通过特异性分子探针靶向NEN过表达的生物标志物,从而实现对NEN的精准诊断和核素治疗。因此,新型分子探针的研发是核医学影像技术发展的重中之重,我们对近年来NEN核医学显像剂的研究进展进行综述。

    • 天然生长抑素(somatostatin,SST)是一种含14或28个氨基酸的多肽类激素,广泛分布于人体的中枢内分泌系统,SST通过与细胞上的SSTR结合后被内化而发挥生理作用[5]。SSTR是一类G蛋白偶联膜受体,5种受体基因被克隆并按克隆时间顺序命名(sstr1~sstr5)[6]。各亚型在不同肿瘤细胞中的过表达水平不同,其中,SSTR2在胃肠胰NEN中过表达最显著[7]。奥曲肽(octreotide,OC)是对天然SST进行结构改造后得到的环状八肽,序列为D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr(ol),使用不同的放射性核素对OC进行标记后,可用于SSTR显像。

    • 68Ga离子可通过稀盐酸淋洗锗镓发生器获得,与多肽前体完成螯合标记过程后可用于体内PET显像。68Ga离子的获得和标记过程简单,对场地和设备要求很低,因此应用广泛。68Ga离子的半衰期为68 min,其衰变形式89%为发射正电子、11%为电子俘获。常用于OC类68Ga标记的螯合基团主要有去铁胺(deferoxamine,DFO)、1,4,7,10-四氮环十二烷-1,4,7,10-四乙酸(DOTA)和1,4,7-三氮环壬烷-1-(1-羧基丁酸)4,7-二乙酸(NODAGA)。常见的68Ga标记OC类探针主要有以下几种。(1)68Ga-DFO-OC:首个用正电子金属核素标记的SST类似物,动物实验结果表明其与111In-DTPA-OC具有类似的生物学分布,且肿瘤摄取速度更快[8];(2)68Ga-1,4,7,10-四氮环十二烷-1,4,7,10-四乙酸-[酪氨酸3]-奥曲肽(68Ga-DOTA-[Tyr3]-octreotide,68Ga-DOTA-TOC):由Asti等[9]完成标记和动物实验,随后的临床研究结果表明,其在NET肺部及骨转移诊断中的效果优于111In-DTPA-OC;(3)68Ga-1,4,7-三氮环壬烷-1-(1-羧基丁酸)4,7-二乙酸-[酪氨酸3]-奥曲肽(68Ga-NODAGA-[Tyr3]-octreotide,68Ga-NODAGA-TOC):Eisenwiener等[10]的动物实验结果显示,其在大鼠体内主要通过肾脏快速代谢,并在胰腺外分泌腺肿瘤细胞中有摄取;(4)68Ga-1,4,7,10-四氮环十二烷-1,4,7,10-四乙酸-[NaI3]-奥曲肽(68Ga-DOTA-[NaI3]-octreotide, 68Ga-DOTA-NOC): 一种对SSTR2、SSTR3和SSTR5均具有高亲和力的探针,其能够检测出非常见部位的NET,如子宫、前列腺、卵巢、肾脏、乳腺和副神经节瘤等[11];(5)68Ga-1,4,7,10-四氮环十二烷-1,4,7,10-四乙酸-[酪氨酸3]-奥曲肽乙酸盐(68Ga-DOTA-[Tyr3]-octreotate,68Ga-DOTA-TATE):与其他OC类探针不同,其仅对最常见的SSTR2有高选择性,研究结果表明,相较于68Ga-DOTA-TOC 和68Ga-DOTA-NOC, 68Ga-DOTA-TATE能够检测出更多的病灶或得到更高的SUV[12-13]

    • 64Cu可通过原子反应堆中的64Zn(n,P)64Cu反应或回旋加速器制备而成,其半衰期为12.7 h,主要通过电子俘获(41%)、β(0.573 MeV,40%)和β+(0.656 MeV,19%)方式衰变。由于某些蛋白类和抗体类分子需要较长的体内循环时间才能到达靶组织进行显像,所以64Cu的放射性标记研究较为广泛[14]64Cu标记OC类探针主要有以下几种。(1)四氮杂大环类螯合基团OC类探针:如DOTA、1,4,8,11-四氮杂环十四烷-N,N′,N″,N′ ′ ′-四乙酸(TETA)和1,4,7-三氮环壬烷-1,4,7-三乙酸(NOTA),其体内稳定性高于无环类螯合基团OC类探针,如DTPA和乙二胺四乙酸(EDTA)OC类探针[15];(2)横桥大环类螯合基团OC类探针:如64Cu-CB-4,11-二羧甲基-1,4,8,11-四氮杂双环[6,6,2]十六烷-SST2-ANT( 64Cu-CB-4,11-bis( carboxymethyl) -1,4,8,11-tetraazabicyclo [6,6,2] hexadecane-SST2-ANT,64Cu-CB-T2A-ANT)、64Cu-4,11-二羧甲基-1,4,8,11-四氮杂双环[6,6,2]十六烷-奥曲肽乙酸盐(64Cu-4,11-bis (carboxymethyl)-1,4,8,11-tetraazabicyclo [6,6,2] hexadecane-octreotate,64Cu-CB-TE1A1P-TATE)和64Cu-CB-4,11-二羧甲基-1,4,8,11-四氮杂双环[6,6,2]十六烷-SST2-ANT-奥曲肽乙酸盐(64Cu-CB-4,11-bis( carboxymethyl)-1,4,8,11-tetraazabicyclo [6,6,2] hexadecane-SST2-ANT-octreotate,64Cu-CB-T2A-ANT-TATE),其被报道用于SSTR显像,且64Cu-CB-TE1A1P-TATE的亲和力和T/NT均比64Cu-CB-T2A-ANT-TATE更高[16-17];(3)六氮大双环笼型螯合基团OC类探针:如5-8-甲基-3,6,10,13,16,19-六氮杂二环[6,6,6]-1基氨基-5-戊酮酸-奥曲肽乙酸盐(5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo [6,6,6] icosan-1-ylamino)-5-oxopentanoic acid-octreotate,64Cu-MeCOSar-TATE),其比64Cu-DOTA-TATE的非靶器官摄取更低,病灶滞留时间更长[18]

    • 回旋加速器制备的18F,通常是使用常规有机化学方法(亲核或亲电反应)连接到探针上,形成稳定的共价键以发挥作用,而多肽所含活泼基团较多,很难通过传统的有机合成方法完成标记,因此,研究者研发出一些多肽18F标记方法,如辅基标记法、同位素交换法和氟-铝螯合法等。已报道的18F标记OC类探针有以下几种。(1)4-氟苯甲酰基-D-苯丙氨酸-奥曲肽(4-18F-fluorobenzoyl-D-Phe-octreotide,4-18F-Ben-OC)和2-氟丙基-D-苯丙氨酸-奥曲肽(2-18F-fluoropropionyl-D-Phe-octreotide,2-18F-Pr-OC):两者的肝脏摄取值较高,肿瘤摄取值较低,体内生物学分布不理想,因此不适合临床应用[19-20];(2)Nα-1-D-脱氧果糖基- Nε-2-氟丙基-赖氨酸0-酪氨酸3-奥曲肽乙酸盐(Nα-(1-deoxy-D-fructosyl)-Nε-(2-18F-fluoropropionyl)-Lys0-Tyr3-octreotate,18F-FP-Gluc-TOCA):由Wester等[21]完成放射性合成和临床前实验,临床研究结果显示,其病灶诊断全面性、显像效果和代谢动力学特性均优于111In-DTPA-OC[22],然而长达3 h的合成时间限制了其广泛应用;(3)18F-对二叔丁基氟硅基-苯甲醛-奥曲肽乙酸盐(18F-p-(di-tert-butylfluorosilyl)benzaldehyde-octreotate,18F-SiFA-TATE)和18F-氨基甲基三氟化硼-奥曲肽乙酸盐(18F-ammoniomethyl-BF3-octerotate,18F-AMBF3-TATE):18F标记通过同位素交换法完成,前者的不足之处在于产物比活度较低、体内稳定性较差且未进行临床试验,后者的合成方法简单、比活度高且体内稳定,但是仅进行了基础实验,还未进行临床显像研究[23-24];(4)Al18F-NOTA-OC:其合成方法基于金属离子螯合反应和氟-氯离子交换,合成方法简单、体内外稳定性较好且生物学分布较理想,但未进行临床试验[25]

      临床研究中,使用诊断核素标记的多肽探针完成对病灶的诊断后,可通过治疗核素标记的多肽探针完成多肽受体放射性治疗(polypeptide receptor radiotherapy,PRRT),这两种核素标记的探针可被称为“诊断治疗搭档”,如68Ga-DOTA-TATE和177Lu-DOTA-TATE[26]。其他治疗核素标记OC类探针的研究亦被广泛报道,如90Y-DOTA-TOC[27]90Y-DOTA-TATE[28]177Lu-DOTA-EB-TATE[29]225Ac-DOTA-TOC[30]213Bi-DOTA-TATE[31]213Bi-DOTA-TOC[32]等。

    • 早在20世纪90年代,111In-DTPA就被用于对OC进行放射性标记,以用于对OC类似物治疗后的良性肿瘤的肝转移诊断[33]。此外,111In-DTPA-OC闪烁扫描术亦可用于诊断分化的无功能性胃肠胰肿瘤、朗格汉斯细胞组织细胞增生症、肺良性肿瘤、成神经细胞瘤、分化脑膜瘤、神经鞘瘤、神经纤维瘤及转移瘤等[34-35]。随后,人们针对螯合基团和OC进行了结构改造,得到111In-DOTA-TOC和111In-DOTA-TATE两种探针。研究结果表明,两者在SSTR2结合力、肾脏滞留时间和药代动力学特征等方面均较111In-DTPA-OC有了很大改进[36]。此类探针的缺点是DTPA无法与治疗核素,如90Y和177Lu螯合用于治疗,且SPECT对检测微小脑膜瘤的灵敏度不高。

    • 由于111In-OC有一些不足之处,且需经由加速器生产核素111In,不易获得,因此在111In-OC基础之上,通过结构改造研发出新型SST类似物显像剂99Tcm-联肼尼克酸/乙二胺-N,N′-二乙酸-[酪氨酸3]奥曲肽(99Tcm-HYNIC/EDDA-TOC,又称99Tcm-Octreoscan,商品名Tektrotyd),并成功应用于临床显像[37]。对NET患者的显像研究结果表明,99Tcm-HYNIC/EDDA-TOC表现出与111In-OC相似的生物学分布,但其肿瘤病灶摄取速度更快、T/NT和灵敏度更高且成本更低,因此更适用于SSTR2阳性疾病的诊断[38]。虽然99Tcm-HYNIC-TOC的应用十分广泛,但受限于其灵敏度和SPECT的分辨率均较低等因素,其在某些情况下已不能满足临床需求。

    • OC类化合物属于SSTR的激动剂类探针,2006年,Ginj等[39]报道了SSTR的拮抗剂类探针。尽管体外实验结果表明,拮抗剂类探针与SSTR2的亲和力远小于激动剂类探针,但动物实验结果表明,拮抗剂类探针对肿瘤的显像效果优于激动剂类探针,这可能是由于拮抗剂类探针能够同时与SSTR2和SSTR3结合,且具有更多的结合位点和较慢的解离速度[40]。以此为据,Cescato等[41]设计合成了一系列SSTR拮抗剂探针,其中结合力和亲水性最高的是DOTA-JR10(DOTA-p-NO2-Phe-c[DCys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2)、DOTA-JR11(DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2)和DOTA-LM3(DOTA-p-Cl-Phe-c[D-CysTyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH2[42],此外,用NODAGA替换DOTA,制备出了适用于68Ga和64Cu离子标记的探针[43]。目前,68Ga-NODAGA-JR11(68Ga-OPS202)和68Ga-DOTA-JR11(68Ga-OPS201)均已进入临床试验阶段。相较于激动剂类探针,拮抗剂类探针的主要优势是其在腹部脏器(肝脏、肠道和脾脏等)的背景摄取更低,有利于病灶的检出。68Ga-NODAGA-JR11的Ⅰ/Ⅱ期临床试验结果表明,在肝转移病灶中,其比68Ga-DOTA-TOC具有更高的T/NT(5.3对1.9,P=0.004)和病灶检出率(88%对 59%,P<0.001)[44-45]。Krebs等[46]完成了68Ga-DOTA-JR11在人体中的生物学分布研究和放射性剂量计算,得出结论:68Ga-DOTA-JR11在肿瘤摄取速度、T/NT和血浆清除速率等方面均优于68Ga-DOTA-TATE和68Ga-DOTA-TOC。Zhu等[47]比较了68Ga-DOTA-JR11和68Ga-DOTA-TATE在NET中的显像效能,结果显示,前者在肝转移及骨转移病灶中显示出了差异性优势。在PRRT研究方面,动物实验及临床试验结果均表明,拮抗剂类探针177Lu-OPS201比激动剂类探针177Lu-DOTA-TATE具有更高的肿瘤辐射剂量以及更好的辐射安全性,因此更适用于NET的PRRT临床研究[48]

    • 18F-FDG是目前肿瘤PET显像中应用最广的探针。葡萄糖高摄取的特性使恶性肿瘤细胞,特别是增殖率高且分化程度低的G3级肿瘤细胞,易于与其他肿瘤细胞区分。据报道,18F-FDG PET/CT对23例G3级 NEC的诊断阳性率达到100%,其中22例患者发生远端转移,最易转移的部位为淋巴结[49]。然而,18F-FDG的高摄取出现在增殖率高且分化程度低的G3级NEC中,大多数G1级和G2级的NET增殖活性低且分化良好,18F-FDG对其的诊断价值受到一定限制[50]。SSTR的表达与去分化有关,18F-FDG PET和SSTR阳性肿瘤显像能够提供互补的显像信息。在临床诊断中,18F-FDG对SSTR显像阴性或增殖指数高的NEC患者更有价值,可判断肿瘤的生物学行为并指导临床决策[51]。此外,18F-FDG对NEC的预后也有一定的预测价值[52]

    • MIBG是去甲肾上腺素的功能性类似物,可特异性浓聚于肾上腺髓质和富肾上腺素能受体的肿瘤细胞内[53]。放射性核素标记的MIBG及其衍生物可用于嗜铬细胞瘤和神经母细胞瘤等NEN的诊断和治疗[54]。常用于标记的放射性核素为123I和131I,123I发射纯γ射线,检测灵敏度更高,显像效果优于131I[55]。相比于123I只能用于SPECT显像,131I能够同时发射β和γ射线,可同时用于NEN患者的显像和核素治疗[56]

    • 多巴胺的结构类似物18F-多巴能够模拟多巴胺的体内代谢情况,因此可用于多种疾病,如嗜铬细胞瘤、副神经节瘤和先天性胰岛功能亢进等的诊断[57-58]

    • 11C-5-羟色胺是5-羟色胺的结构类似物,可参与5-羟色胺代谢途径并用于胰岛细胞相关NEN的检测[59]。然而受限于复杂的合成过程,其较难实现大量生产和广泛应用,因此已很少在临床中应用[60]

    • 综上所述,NEN核医学分子探针研究取得的成果可以在诸多方面提升NEN的诊断和预后评价水平。NEN核医学分子探针种类繁多,显像机制各不相同,其中靶向SSTR类显像剂是目前应用的主流,相比于传统的激动剂,SSTR拮抗剂展现出了更高的T/NT和显像效能。随着PRRT技术的出现及推广,核医学分子探针在NEN中的诊疗一体化研究将会在临床中发挥更重要的作用,因此,更多精准靶向探针的研发仍是重中之重。

      利益冲突 本研究由署名作者按以下贡献声明独立开展,不涉及任何利益冲突。

      作者贡献声明 刘炳楠负责文献的收集、综述的撰写;王颖负责综述的审校、勘误和修改;要少波负责选题的确定、综述的修订。

参考文献 (60)

目录

    /

    返回文章
    返回