环状RNA作为肿瘤标志物及其在肿瘤放疗中应用的研究进展

郭新园 王蕊 衣峻萱 金顺子

引用本文:
Citation:

环状RNA作为肿瘤标志物及其在肿瘤放疗中应用的研究进展

    通讯作者: 金顺子, jinsz@jlu.edu.cn

Progress in the research on circRNAs as tumor markers and their applications in radiotherapy

    Corresponding author: Shunzi Jin, jinsz@jlu.edu.cn
  • 摘要: 放疗是肿瘤综合治疗的重要手段之一,但放疗抵抗是影响肿瘤患者放疗疗效及预后的一大难题。由于肿瘤细胞放疗抵抗的机制十分复杂,所以至今还未找到特别有效的调控放疗敏感性的开关分子。环状RNA(circRNA)是一类通过反式剪接使得 3' 末端与 5' 末端共价结合的闭合circRNA分子,具有丰度高、结构稳定和特异性强等特征。circRNA参与肿瘤的发生、发展、侵袭和转移等过程,可以作为新型肿瘤分子标志物和潜在的治疗靶点。此外,circRNA在受照后的肿瘤细胞中存在差异性表达,并可作为微小RNA(miRNA)的海绵,调控与肿瘤放疗抵抗相关的miRNA及其下游信号通路,使其有望成为攻克肿瘤放疗抵抗的突破口。笔者综述了circRNA作为新型肿瘤标志物及其在肿瘤放疗中应用的研究进展。
  • [1] Tang L, Wei F, Wu YF, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods[J]. J Exp Clin Cancer Res, 2018, 37(1): 87. DOI: 10.1186/s13046-018-0758-7.
    [2] Meng SJ, Zhou HC, Feng ZY, et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J/OL]. Mol Cancer, 2017, 16(1): 94[2019-03-20]. https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-017-0663-2. DOI: 10.1186/s12943-017-0663-2.
    [3] Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: Biogenesis, Function, and a Role as Possible Cancer Biomarkers[J]. Int J Genomics, 2017, 2017: 6218353. DOI: 10.1155/2017/6218353.
    [4] Xie HJ, Ren XL, Xin SN, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J/OL]. Oncotarget, 2016, 7(18): 26680-26691[2019-03-20]. https://www.oncotarget.com/article/8589/text/. DOI: 10.18632/oncotarget.8589.
    [5] Cao S, Chen GH, Yan LM, et al. Contribution of dysregulated circRNA_100876 to proliferation and metastasis of esophageal squamous cell carcinoma[J/OL]. Onco Targets Ther, 2018, 11:7385−7394[2019-03-20]. https://www.dovepress.com/contribution-of−dysregulated−circrna100876−to−proliferation−and−metast−peer−reviewed−article-OTT. DOI: 10.2147/OTT.S177524.
    [6] Xia WJ, Qiu MT, Chen R, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation[J/OL]. Sci Rep, 2016, 6: 35576[2019-03-20]. https://www.nature.com/articles/srep35576. DOI: 10.1038/srep35576.
    [7] Wang W, Ma J, Lu JJ, et al. Circ0043898 acts as a tumor inhibitor and performs regulatory effect on the inhibition of esophageal carcinoma[J]. Cancer Biol Ther, 2018, 19(12): 1117−1127. DOI: 10.1080/15384047.2018.1480889.
    [8] Rong J, Wang Q, Zhang YZ, et al. Circ-DLG 1 promotes the proliferation of esophageal squamous cell carcinoma[J/OL]. Onco Targets Ther, 2018, 11: 6723−6730[2019-03-20]. https://www.dovepress.com/circ−dlg−1−promotes−the−proliferation−of−esophageal−squamous−cell−carc−peer−reviewed−article-OTT. DOI: 10.2147/OTT.S175826.
    [9] Qi XL, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710−718. DOI: 10.1136/jmedgenet-2015-103334.
    [10] Sun HD, Tang WW, Rong DW, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma[J]. Cancer Biomark, 2018, 21(2): 299−306. DOI: 10.3233/CBM-170379.
    [11] Wang L, Shen JY, Jiang YS. Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1[J/OL]. Cell Biosci, 2018, 8: 58[2019-03-20]. https://link.springer.com/article/10.1186/s13578-018-0252-0. DOI: 10.1186/s13578-018-0252-0.
    [12] Xie Y, Shao YF, Sun WL, et al. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values[J]. Biomark Med, 2018, 12(1): 11−20. DOI: 10.2217/bmm-2017−0114.
    [13] Tian MQ, Chen RY, Li TW, et al. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance[J]. J Clin Lab Anal, 2018, 32(3): e22281. DOI: 10.1002/jcla.22281.
    [14] Shao YF, Chen LB, Lu RD, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances[J]. Tumour Biol, 2017, 39(4): 1010428317699125. DOI: 10.1177/1010428317699125.
    [15] Gu XH, Wang G, Shen H, et al. Hsa_circ_0033155: A potential novel biomarker for non-small cell lung cancer[J]. Exp Ther Med, 2018, 16(4): 3220−3226. DOI: 10.3892/etm.2018.6565.
    [16] Zong L, Sun QC, Zhang HP, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance[J]. Biomed Pharmacother, 2018, 102: 639−644. DOI: 10.1016/j.biopha.2018.03.084.
    [17] Tian XF, Zhang L, Jiao Y, et al. CircABCB10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the miR-1252/FOXR2 axis[J]. J Cell Biochem, 2019, 120(3): 3765−3772. DOI: 10.1002/jcb.27657.
    [18] Chen Y, Wei SZ, Wang XY, et al. Progress in research on the role of circular RNAs in lung cancer[J/OL]. World J Surg Oncol, 2018, 16(1): 215[2019-03-20]. https://link.springer.com/article/10.1186/s12957−018−1515−2. DOI: 10.1186/s12957-018-1515-2.
    [19] Zhang XW, Qiu SL, Luo P, et al. Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis[J]. Cancer Biomark, 2018, 22(1): 135−142. DOI: 10.3233/CBM-171109.
    [20] Zhu Q, Lu GY, Luo ZH, et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis[J]. Biochem Biophys Res Commun, 2018, 497(2): 626−632. DOI: 10.1016/j.bbrc.2018.02.119.
    [21] Weng QY, Chen MJ, Li MQ, et al. Global microarray profiling identified hsa_circ_0064428 as a potential immune-associated prognosis biomarker for hepatocellular carcinoma[J]. J Med Genet, 2019, 56(1): 32−38. DOI: 10.1136/jmedgenet-2018-105440.
    [22] Fu LY, Jiang ZL, Li TW, et al. Circular RNAs in hepatocellular carcinoma: Functions and implications[J/OL]. Cancer Med, 2018, 7(7): 3101-3109[2019-03-20]. https://onlinelibrary.wiley.com/doi/full/10.1002/cam4.1574. DOI: 10.1002/cam4.1574.
    [23] Ma HB, Yao YN, Yu JJ, et al. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506[J/OL]. Am J Transl Res, 2018, 10(2): 592-604[2019-03-20]. https://pubmed.ncbi.nlm.nih.gov/29511454/.
    [24] Hu CJ, Wang Y, Li A, et al. Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR-545/EIF3C axis[J]. J Cell Physiol, 2019, 234(6): 9225−9232. DOI: 10.1002/jcp.27601.
    [25] Song TL, Xu AL, Zhang ZF, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075[J]. J Cell Physiol, 2019, 234(8): 14296−14305. DOI: 10.1002/jcp.28128.
    [26] Chang HP, Wang JZ, Tian Y, et al. The TPX2 gene is a promising diagnostic and therapeutic target for cervical cancer[J]. Oncol Rep, 2012, 27(5): 1353−1359. DOI: 10.3892/or.2012.1668.
    [27] Jiang PY, Shen KX, Wang XR, et al. TPX2 regulates tumor growth in human cervical carcinoma cells[J]. Mol Med Rep, 2014, 9(6): 2347−2351. DOI: 10.3892/mmr.2014.2106.
    [28] Zhang JH, Zhao XY, Zhang J, et al. Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway[J]. Biochem Biophys Res Commun, 2018, 501(2): 428−433. DOI: 10.1016/j.bbrc.2018.05.006.
    [29] Liu JM, Wang DB, Long ZQ, et al. CircRNA8924 Promotes Cervical Cancer Cell Proliferation, Migration and Invasion by Competitively Binding to MiR-518d-5p/519-5p Family and Modulating the Expression of CBX8[J]. Cell Physiol Biochem, 2018, 48(1): 173−184. DOI: 10.1159/000491716.
    [30] Jeggo PA, Geuting V, Löbrich M. The role of homologous recombination in radiation-induced double-strand break repair[J]. Radiother Oncol, 2011, 101(1): 7−12. DOI: 10.1016/j.radonc.2011.06.019.
    [31] Yu D, Li YF, Ming ZH, et al. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs[J/OL]. Peer J, 2018, 6: e5011[2019-03-20]. https://peerj.com/articles/5011/. DOI: 10.7717/peerj.5011.
    [32] Su HF, Lin FQ, Deng X, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells[J/OL]. J Transl Med, 2016, 14(1): 225[2019-03-20]. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-0977-7. DOI: 10.1186/s12967-016-0977-7.
    [33] O'Leary VB, Smida J, Matjanovski M, et al. The CircRNA interactome-innovative hallmarks of the intra- and extracellular radiation response[J/OL]. Oncotarget, 2017, 8(45): 78397−78409[2019-03-20]. https://www.oncotarget.com/article/19228/text/. DOI: 10.18632/oncotarget.19228.
    [34] Shuai MX, Hong JW, Huang DH, et al. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity[J]. Oncol Lett, 2018, 16(5): 6495−6501. DOI: 10.3892/ol.2018.9471.
    [35] Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation[J]. Semin Cancer Biol, 2015, 35: 180−190. DOI: 10.1016/j.semcancer.2015.07.003.
    [36] Kim Y, Kim KH, Lee J, et al. Wnt activation is implicated in glioblastoma radioresistance[J]. Lab Invest, 2012, 92(3): 466−473. DOI: 10.1038/labinvest.2011.161.
    [37] Cojoc M, Peitzsch C, Kurth A, et al. Aldehyde Dehydrogenase Is Regulated by Β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells[J]. Cancer Res, 2015, 75(7): 1482−1494. DOI: 10.1158/0008-5472.CAN-14-1924.
    [38] Bar-Ad V, Leiby B, Witek M, et al. Treatment-related Acute Esophagitis For Patients With Locoregionally Advanced Non-Small Cell Lung Cancer Treated With Involved-field Radiotherapy and Concurrent Chemotherapy[J]. Am J Clin Oncol, 2014, 37(5): 433−437. DOI: 10.1097/COC.0b013e31827de7a2.
    [39] Luo JD, Zhang CS, Zhan Q, et al. Profiling circRNA and miRNA of radiation-induced esophageal injury in a rat model[J/OL]. Sci Rep, 2018, 8(1): 14605[2019-03-20]. https://www.nature.com/articles/s41598-018-33038-1. DOI: 10.1038/s41598-018-33038-1.
    [40] Lu QY, Gong W, Wang JH, et al. Identification of Circular RNAs Altered in Mouse Jejuna After Radiation[J]. Cell Physiol Biochem, 2018, 47(6): 2558−2568. DOI: 10.1159/000491652.
    [41] Yu L, Gong Xj, Sun L, et al. The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression[J/OL]. PLoS One, 2016, 11(7): e0158347[2019-03-20]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158347. DOI: 10.1371/journal.pone.0158347.
  • [1] 夏伟罗全勇袁志斌 . PET-CT在肿瘤放射治疗中的应用. 国际放射医学核医学杂志, 2006, 30(6): 331-335.
    [2] 路璐樊赛军 . 自噬对肿瘤放射治疗疗效的影响. 国际放射医学核医学杂志, 2019, 43(1): 61-67. doi: 10.3760/cma.j.issn.1673-4114.2019.01.011
    [3] 翟红彦苏成海 . 基因治疗联合放射治疗恶性肿瘤的分子机制. 国际放射医学核医学杂志, 2009, 33(2): 113-116. doi: 10.3760/cma.j.issn.1673-4114.2009.02.015
    [4] 凌萍张旭光涂彧 . 纳米金在肿瘤显像与放射治疗中的应用. 国际放射医学核医学杂志, 2011, 35(1): 59-61. doi: 10.3760/cma.j.issn.1673-4114.2011.01.016
    [5] 赵艳芝李进王芹穆传杰 . 恶性肿瘤基因治疗和放射治疗相互作用的机制及联合治疗展望. 国际放射医学核医学杂志, 2006, 30(4): 250-253.
    [6] 周楠李囡馨朱华晨岳英明 . 高分辨率CT联合多种血清肿瘤标志物对不同病理类型早期肺癌的诊断价值. 国际放射医学核医学杂志, 2023, 47(2): 81-86. doi: 10.3760/cma.j.cn121381-202202022-00268
    [7] 张耀文曹永珍李进王芹 . 基因治疗联合放射治疗恶性肿瘤. 国际放射医学核医学杂志, 2008, 32(4): 247-250.
    [8] 章鹤宋建元曹建平 . 肿瘤放射增敏药物的研究进展. 国际放射医学核医学杂志, 2014, 38(6): 408-411. doi: 10.3760/cma.j.issn.1673-4114.2014.06.014
    [9] 赵徵鑫翟贺争张文艺焦玲 . 质子重离子治疗肿瘤的进展. 国际放射医学核医学杂志, 2016, 40(5): 384-393. doi: 10.3760/cma.j.issn.1673-4114.2016.05.010
    [10] 何垠波周莉徐庆丰柏森钟仁明 . 网络管理对肿瘤放疗流程的优化. 国际放射医学核医学杂志, 2012, 36(3): 182-185. doi: 10.3760/cma.j.issn.1673-4114.2012.03.016
  • 加载中
计量
  • 文章访问数:  5633
  • HTML全文浏览量:  4962
  • PDF下载量:  21
出版历程
  • 收稿日期:  2019-03-21
  • 刊出日期:  2020-06-25

环状RNA作为肿瘤标志物及其在肿瘤放疗中应用的研究进展

    通讯作者: 金顺子, jinsz@jlu.edu.cn
  • 吉林大学公共卫生学院,国家卫生健康委放射生物学重点实验室,长春 130021

摘要: 放疗是肿瘤综合治疗的重要手段之一,但放疗抵抗是影响肿瘤患者放疗疗效及预后的一大难题。由于肿瘤细胞放疗抵抗的机制十分复杂,所以至今还未找到特别有效的调控放疗敏感性的开关分子。环状RNA(circRNA)是一类通过反式剪接使得 3' 末端与 5' 末端共价结合的闭合circRNA分子,具有丰度高、结构稳定和特异性强等特征。circRNA参与肿瘤的发生、发展、侵袭和转移等过程,可以作为新型肿瘤分子标志物和潜在的治疗靶点。此外,circRNA在受照后的肿瘤细胞中存在差异性表达,并可作为微小RNA(miRNA)的海绵,调控与肿瘤放疗抵抗相关的miRNA及其下游信号通路,使其有望成为攻克肿瘤放疗抵抗的突破口。笔者综述了circRNA作为新型肿瘤标志物及其在肿瘤放疗中应用的研究进展。

English Abstract

  • 放疗是恶性肿瘤的3大治疗手段之一,但肿瘤细胞的放疗抵抗是导致肿瘤患者放疗失败和预后不良的重要因素[1]。环状RNA(circular RNA,circRNA)是一类新型的内源性共价闭合环状非编码RNA,无5'末端帽结构及3'末端多聚A尾[2]。circRNA的数量丰富,具有较高的细胞和组织特异性。circRNA独特的结构使其对核糖核酸酶不敏感,能够完整且高度稳定地存在于各种组织和体液中。这些特性使circRNA成为肿瘤诊断、治疗和判断预后的理想非侵入性生物标志物[3]。近年来,由于高通量测序和生物信息学技术的飞速发展,circRNA成为了继微小RNA(microRNA,miRNA)及长链非编码RNA后RNA家族在肿瘤放疗领域又一新的研究热点。研究表明,一些circRNA可调控miRNA 的功能并作为miRNA的海绵,在肿瘤的基因转录调控中发挥重要作用[4]。我们对circRNA作为新型的肿瘤标志物及其在肿瘤放疗中应用的研究进展作一综述。

    • 食管癌是消化道常见的恶性肿瘤之一。虽然根治性食管癌切除术联合化疗已得到广泛的应用,但由于食管癌难以早期诊断且易发生转移,其5年总生存率仍然较低。因此,寻找新的生物标志物和治疗靶点是提高食管癌诊治水平的关键。有研究表明,食管鳞状细胞癌组织中circ_100876和circ_0067934的表达水平明显高于相应的非癌组织,而circ_0043898在食管癌组织中的表达下调[5-7]。circ_100876和circ_0067934的下调可抑制食管鳞状细胞癌细胞的增殖、侵袭和转移,而过表达的circ_0043898也可抑制癌细胞的发生发展,诱导癌细胞凋亡或死亡,这3种circRNA均可作为食管癌诊断和治疗的生物标志物。Rong等[8]通过实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)检测结果发现,与正常样本相比,circ-DLG1(hsa_circ_0007203)在食管鳞状细胞癌的细胞、组织和血浆中的表达量明显上调。此外,上调的circ-DLG1显著增加了细胞的增殖能力。进一步构建circ-DLG1与miRNA相互作用的网络,结果发现circ-DLG1可以作为20种miRNA的海绵且具有60个相应的靶mRNA,因此circ-DLG1可作为一种新型食管鳞状细胞癌的生物标志物发挥作用,但是circ-DLG1是如何与其靶miRNA及其相应的mRNA相互作用,从而影响肿瘤的发生发展还有待进一步的研究。

    • 胃癌是一种常见的消化系统恶性肿瘤,发病率居所有恶性肿瘤的第4位,在东亚国家(如中国和日本)高发。胃癌的发生伴随着肿瘤细胞中一系列RNA和蛋白质的改变[9],阐明胃癌发生发展的分子基础,可以确定其潜在的诊断标志物和治疗靶点。Sun等[10]研究发现,与对照组相比,hsa_circ_0000520在胃癌组织、血浆和胃癌细胞系中均显著下调(P=0.0374)。hsa_circ_0000520的表达与胃癌关键临床指标有很强的相关性,如癌胚抗原(P=0.033)和TNM 分期(P=0.042)。他们在circinteractome数据库上进行了circRNA-miRNA相互作用网络的预测,得出9个候选miRNA及200个相应的靶mRNA与circ_0000520发生相互作用。其中miR-512-5p、miR-663b、miR-1258、miR-1233和miR-129参与抑制或促进胃癌的形成。Wang等[11]发现,circ_0027599在胃癌组织中的表达明显下调。随后的生物信息学工具和荧光素酶报告基因检测结果发现,circ_0027599负向调控miR-101,在转染circ_0027599小干扰RNA的胃癌细胞中miR-101水平上调,从而证明circ_0027599为miR-101的海绵。此外,通过转染miR-101抑制剂,胃癌细胞中circ_0027599的表达上调,降低了胃癌细胞的增殖和转移能力,这说明circ_0027599可通过与miR-101 的相互作用参与胃癌的发生发展。此外,也有研究表明,circ_0074362[12]、circ_0003159[13]和circ_0001895[14]在胃癌组织中的表达明显下调,并与一些临床指标,如肿瘤标志物和TNM分期密切相关。circRNA可作为一种新型稳定的生物标志物,在胃癌的临床诊断和治疗中得到应用。

    • 肺癌是全世界范围内最常见,病死率最高的恶性肿瘤之一,其中80% 以上都是非小细胞肺癌(non-small cell lung cancer,NSCLC),虽然规范化的诊断和治疗使肺癌的生存率稳步上升,但其5年总体生存率依然低于20%。因此寻找肺癌新型的诊断和治疗标志物是当务之急[15]。Zong等[16]通过qRT-PCR检测57例肺癌患者肺腺癌组织及癌旁组织中circ_102231的表达,结果显示,circ_102231的表达明显上调(P<0.05),且与整体生存率低、TNM晚期(Ⅲ~Ⅳ)和淋巴结转移密切相关(P<0.05)。生物学功能研究结果显示,抑制circ_102231的表达可抑制肺癌细胞的体外增殖、侵袭和转移。此外,通过ROC曲线证实circ_102231对肺癌具有良好的诊断价值,其灵敏度和特异度分别为81.2%和88.7%。Tian等[17]发现,circABCB10在NSCLC细胞中的表达显著增加,生物信息学和荧光素酶活性报告分析证明circABCB10是miR-1252的海绵,且叉头盒R2(forkhead box 2,FOXR2)是miR-1252的靶点。miR-1252与FOXR2的3'UTR相互作用,并抑制FOXR2的表达。此外,沉默circ_ABCB10可抑制FOXR2的表达,这提示circABCB10可通过海绵作用调控miR-1252,从而增加FOXR2的表达,进而促进NSCLC的进展,所以circ_ABCB10可能是NSCLC潜在的治疗靶点。研究表明,circ_103809通过海绵化miR-4302促进zinc finger protein 121的表达,提高肺癌细胞MYC蛋白水平,进而促进肺癌细胞的增殖和侵袭;circ_0012673通过miR-22/ErbB3通路参与肺腺癌细胞的增殖;circMAN2B2可以作为miR-1275的海绵,促进Forkhead box K1的表达,从而促进肺癌细胞的增殖和侵袭[18],这说明circRNA作为miRNA的海绵可以调节miRNA下游的分子,从而在肺癌的发生发展中起重要作用。

    • HCC是最常见的恶性肿瘤之一,虽然近年在手术技术和肝移植等方面取得了一定的进展,但HCC患者的远期生存率仍较低。因此,探索新的生物标志物和治疗靶点对优化HCC的治疗和预后至关重要[19]。Zhu等[20]在已知circ_0067934的上调可以促进食管鳞状细胞癌细胞增殖[6]的基础上,利用qRT-PCR技术进一步发现circ_0067934在HCC组织和细胞中的表达也明显上调,且circ_0067934的表达与TNM分期和HCC的进展呈正相关。通过生物信息学和荧光素酶活性报告分析,结果发现并验证了circ_0067934 是miR-1324的海绵。miR-1324在HCC细胞中靶向结合Frizzled 5(FZD5)mRNA的 3'UTR 区。FZD5 是Wnt的共受体,可以促进Wnt/β-catenin信号通路的激活。因此,circ_0067934/ miR-1324/FZD5 / Wnt/β-catenin轴是一个有前景的HCC治疗靶点。Weng等[21]结合基因芯片和qRT-PCR技术,在肿瘤浸润淋巴细胞高的HCC患者中识别出6种差异表达的新型circRNA。Kaplan-Meier生存曲线显示,circ_0064428的表达与HCC患者的生存高度相关。circ_0064428的表达在肿瘤浸润淋巴细胞高的HCC患者中明显下调,且与患者的总生存率、肿瘤大小和转移负相关。此外研究还发现,与传统的HCC预后标志物甲胎蛋白相比,circ_0064428作为独立的HCC预后生物标志物具有无可比拟的优势。此外,近年的研究表明,circ_0004018、circ_0003570和circ_0005075等 circRNA 极其稳定并高度保守,表达模式具有组织特异性[22],是诊断HCC的潜在生物标志物,但仍需要更多的研究来阐明这些circRNA在HCC中的分子生物学机制。

    • 宫颈癌是世界范围内女性的第2大常见肿瘤,也是女性癌症相关死亡的主要原因。虽有证据表明感染高危型人乳头瘤病毒(HR HPV)会大大增加宫颈癌的发病率,但宫颈癌的发病机制尚不明确。因此,寻找新的诊断和预后生物标志物对宫颈癌的治疗至关重要[23-24]。Song等[25]分析了GSE102686数据库中差异表达的circRNA,结果发现circ_101996在宫颈癌组织中明显高表达,并促进宫颈癌的增殖、侵袭和转移,被认为是宫颈癌的致癌基因。他们通过荧光素酶活性检测进一步证实了circ_101996是miR-8075的海绵,miR-8075与xKlp靶蛋白2(targeting protein for xenopus kinesin-like protein 2,TPX2)结合抑制了TPX2的表达,并且既往研究表明,TPX2可促进宫颈癌的进展[26-27]。circ_101996通过海绵作用调节miR-8075导致TPX2过表达,从而促进宫颈癌的进展,这提示circ_101996-miR-8075-TPX2功能网络有助于宫颈癌进展机制的研究。近年的研究结果发现,circ_0067934/miR-545/EIF3C 轴[24] 、 circ_0023404/miR-136/TFCP2/YAP 轴[28]和circ_8924-miR-518d-5p/519-5p-CBX8轴[29]等促进了宫颈癌的进展,为宫颈癌分子水平的治疗提供了一个全新的视角,并可能成为宫颈癌治疗的潜在靶点。

      总之,随着高通量RNA测序和生物信息学技术的发展,circRNA在越来越多的肿瘤中被发现,circRNA的保守性、稳定性和组织特异性等特点及其在肿瘤细胞中的差异性表达使其在作为肿瘤早期诊断、治疗和预后的生物标志物上具有巨大的临床应用潜力。此外,circRNA 可作为 miRNA的海绵,通过与肿瘤相关的miRNA或信号通路的相互作用,对肿瘤的发生发展起重要的调节作用。虽然circRNA的研究尚处于起步阶段,但其独特的结构与功能预示着circRNA可能成为有前景的肿瘤生物学标志物,并为肿瘤个性化治疗提供重要的研究思路和新的治疗靶点。

    • 放疗是通过电离辐射促进肿瘤细胞DNA损伤、抑制细胞增殖、诱导细胞凋亡,同时可调控肿瘤细胞内多条信号通路[30],从而达到杀伤肿瘤的目的。但肿瘤细胞的放疗抵抗一直是影响放疗疗效的巨大难题。近年的研究结果表明,照射后circRNA的表达出现了不同程度的上调或下调,circRNA在肿瘤细胞中的差异性表达与肿瘤的放疗抵抗密切相关,可能成为提高放疗疗效的分子靶点[31-32]

      O′Leary等[33]利用基因芯片和二代测序技术得出,人内皮细胞外泌体中由含WW域的氧化还原酶编码的circRNA KIRKOS-71和KIRKOS-73在受到中、低剂量照射后,对电离辐射产生不同程度的应答,并在不同细胞系中差异性表达。如在使用0.25 Gy和2.5 Gy照射24 h后的神经母细胞瘤细胞系SHEP中,circRNA KIRKOS-71和KIRKOS-73的表达均下调。相比之下,在骨肉瘤细胞系U2OS中,低剂量照射24 h和中等剂量照射4 h后,二者的表达均显著上调。circRNA KIRKOS-71和KIRKOS-73作为稳定分泌的circRNA参与细胞辐照反应,可为寻找放疗的生物学标志物提供新的思路。

      Yu等[31] 对circRNA在宫颈癌HeLa细胞系中的辐射抵抗作用进行分析,采用高通量测序技术对HeLa细胞中16 893种circRNA进行检测,结果发现,与对照组相比,照射组中差异表达的circRNA共153种,其中76种上调、77种下调。京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析显示,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信号通路是circRNA最丰富的通路,有19个相关基因。此外,在MAPK和神经营养蛋白信号通路中均发现6种基因:RPS6KA5RPS6KA6CRKLRAP1AFASLGMAPK8。蛋白互作网络分析显示,MAPK8蛋白是与其他10种蛋白相关的中心蛋白,对MAPK8编码基因的研究结果表明,其在T细胞增殖、凋亡和分化过程中发挥关键作用,可能是宫颈癌放疗抵抗的关键蛋白。以上研究结果提示circRNA在宫颈癌的放疗中存在差异性表达,并且在放疗抵抗中起重要作用。但circRNA引起HeLa细胞辐射抗性的分子生物学机制需要进一步探讨。

      Shuai 等[34] 对不同亚型的circHIPK3(circ_100783、circ_0000285 和circ_100782)在鼻咽癌患者中的表达水平进行检测, 利用qRT-PCR 技术检测到circ_000285在鼻咽癌患者组织和血清中的表达显著上调,且放疗抵抗患者circ_000285的表达水平较放疗敏感患者升高3倍,Kaplan Meier生存曲线显示,circ_000285高表达患者的总生存率明显低于circ_000285低表达患者,这提示circ_000285可作为鼻咽癌诊断、预后和预测放疗疗效的生物学标志物。

      Su等[32]对放疗抵抗食管癌患者的细胞样本进行基因芯片分析,在检测到的3752个候选circRNA中,与亲本细胞系KYSE-150相比,人耐辐射食管癌细胞系KYSE-150R中有57种circRNA的表达上调、17种下调。其中circ_100385、circ_104983和circ_001059呈显著性高表达,同时circ_101877、circ_102913和 circ_000695 的表达水平则明显下降,这提示circRNA表达水平的改变参与了食管癌放疗抵抗的调控。他们在circRNA/miRNA共表达网络中发现,circ_001059和circ_000167是两个最重要的节点,它们作为miRNA海绵,可能参与放疗抵抗的形成。此外,在KEGG通路富集分析中,与上调circRNA相关的磷脂酰肌醇信号通路已被证实为肿瘤细胞对辐射反应的核心媒介,磷脂酰肌醇3-激酶(PI3K)/Akt通路通过加速DNA双链断裂的修复导致放疗抵抗[35]。同时,与下调circRNA相关的Wnt信号通路也在胶质母细胞瘤[36]和前列腺癌[37]的放疗抵抗中发挥重要作用。但这些通路是否参与食管癌的放疗抵抗仍需进一步研究。此研究为circRNA在放疗抵抗中的分子机制的研究提供了新的思路。

      此外,circRNA的差异性表达与放疗后的不良反应密切相关。如由于食管上皮细胞对电离辐射极为敏感[38],颈部、胸部或纵隔区域肿瘤患者在接受放疗的过程中容易发生放射性食管损伤。Luo等[39]对circRNA在大鼠辐射诱导食管损伤模型中的生物学功能进行KEGG通路富集分析,结果表明,在照射过程中,circRNA的差异性表达与鞘脂代谢密切相关,鞘脂代谢可能是辐射诱导食管损伤的重要环节,这提示鞘脂代谢可作为一种药物靶点,可用于减轻放疗后食管损伤的不良反应,提高放疗的疗效。又如肠道上皮细胞的辐射耐受性低,腹部或盆腔肿瘤放疗后可产生高辐射毒性,从而导致辐射诱导的肠道损伤。Lu等[40]发现辐照后小鼠空肠细胞中90个circRNA发生差异性表达,其中42个上调、48个下调。通过基因本体生物过程富集和KEGG通路富集分析,结果表明,14个上调的circRNA 的靶向mRNA 也上调, 22个下调的circRNA的靶向mRNA也下调,且发现一个circRNA可以与多个miRNA相互作用,一个miRNA又可以抑制多个mRNA。由于目前还没有公认的预防和(或)治疗放射性肠损伤的方法,circRNA-miRNA-mRNA网络为circRNA在辐射诱导的肠道损伤和修复中的研究提供了新思路。但寻找可应用于减轻放疗对肠道损伤的特定circRNA仍需进一步的深入研究。

    • 在当代肿瘤治疗的三大手段中,由于肿瘤细胞对化疗药物易产生耐药性、手术治疗的局限性以及许多患者在确诊时已为肿瘤晚期,失去了最佳的手术时机,因此,放疗在肿瘤综合治疗中的地位越来越突显。但放疗抵抗是目前影响肿瘤患者放疗疗效的关键问题。尽管同步放化疗以及使用放疗增敏剂等方法在不断地创新与完善,但其特异度与灵敏度低,无法克服放疗后不良反应等问题一直难以攻克,所以寻找新型克服放疗抵抗的分子靶点是当前的研究热点。

      随着RNA测序和基因芯片等技术的飞速发展,越来越多的研究表明circRNA与许多疾病(尤其是肿瘤)存在着较为密切的关系。circRNA的特殊结构赋予了其高度保守、特异性和稳定性高的特性,在血清中的高表达更是让circRNA 适用于临床检测。circRNA在受到照射后肿瘤细胞中的差异性表达是其能够成为放疗生物标志物的基础,并且其与肿瘤的大小、分期、发生发展、侵袭和转移等具有相关性,因此有望成为评估放疗疗效和预后的关键指标。有文献报道,circRNA可作为miRNA的海绵影响miRNA作为翻译抑制因子的转录后作用[41]。又因为不同的miRNA对放疗有不同程度的促进或抑制,所以我们大胆猜测可以通过circRNA靶向海绵化与肿瘤放疗抵抗相关的miRNA并调控其下游信号通路,或抑制靶向海绵化与提高肿瘤放疗敏感性相关miRNA的circRNA,从而达到提高放疗疗效的目的。总而言之,靶向调控circRNA-miRNA网络可能为增强肿瘤放疗敏感性提供新的思路,从而针对不同肿瘤和不同个体进行更加有效的个性化治疗。

    • 综上所述,circRNA作为新型提高放疗敏感性的肿瘤标志物具有良好的前景和应用价值,但对于circRNA在放疗抵抗中发挥的分子生物学机制以及和放疗抵抗相关的特定circRNA-miRNA调控网络与其下游信号通路还需要更多的研究进行突破。相信随着研究手段的不断进步,会有越来越多的circRNA作为放疗敏感性的开关分子在临床上得到广泛应用。

      利益冲突 本研究由署名作者按以下贡献声明独立展开,不涉及任何利益冲突。

      作者贡献声明 郭新园负责综述的选题、文献的搜集与整理、综述的撰写;王蕊负责文献的检索与综述的修改;衣峻萱负责综述的修改与校对;金顺子负责综述的思路确定和指导。

参考文献 (41)

目录

    /

    返回文章
    返回