纳米材料在多模式显像探针中的应用

唐宇辉 陈跃

引用本文:
Citation:

纳米材料在多模式显像探针中的应用

Application of nanomaterial in multimodal imaging probes

  • 摘要: 随着多模式显像技术的发展,多模式显像探针的开发利用成为研究热点。但是要使各功能探针的灵敏度达到最佳配比,从而真正实现多模式显像却是一大难点,由于纳米材料体积小、物理及化学性质可塑性强,在各探针的连接、修饰、配比等更方面具有更大的灵活性,故已成为研究多模式显像探针的新宠,同时取得了很大进展。该文着重讨论了纳米材料的属性及在多模式显像探针中的应用与进展。
  • [1] Townsend DW.Combined positron emission tomography-computed tomography:the historicalperspective.Semin Ultrasound CT MR,2008,29(4):232-235.
    [2] Boss A,Bisdas S,Kolb A,et al.Hybrid PET/MRI of intracranial masses:initial experiences and comparison to PET/CT.J Nucl Med,2010,51(8):1198-1205.
    [3] Moghimi SM,Hunter AC,Murray JC.Nanomedicine:current status and future prospects.FASEB J,2005,19(3):311-330.
    [4] Bentolila LA,Ebenstein Y,Weiss S.Quantum dots for in vivo small-animal imaging.J Nucl Med,2009,50(4):493-496.
    [5] Lovric J,Cho SJ,Winnik FM,et al.Unmodified cadmium telluride quantum dots induce reactive oxygen speciesformation leading to multiple organdie damage and cell death.Chem Biol,2005,12(11):1227-1234.
    [6] Ryman-Rasmussen JP,Riviere JE,Monteiro-Riviere NA.Surface coatings determine cytotoxicity and irritation potential of quantum dotnanoparticles in epidermal keratinocytes.J Invest Dermatol,2007,127(1):143-153.
    [7] Bakalova R,Zhelev Z,Aoki I,et al.Multimodal silica-shelled quantum dots:direct intracellular delivery,photosensitization,toxic,and miemcireulation effects.Bioconjug Chem,2008,19(6):1135-1142.
    [8] Grayson SM,Frechet JM.Convergent dendrons and dendrimers:from synthesis to applications.Chem Rev,2001,101(12):3819-3868.
    [9] Yan H,Wang J,Yi P,et al.Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain bar-tier.Chem Commun(Camb),2011,47(28):8130-8132.
    [10] Jain K,Kesharwani P,Gupta U,et al.Dendrimer toxicity:Let's meet the challenge.Int J Pharm,2010,394(1-2):122-142.
    [11] Liao H,Paratala B,Sitharaman B,et al.Applications of carbon nanotubes in biomedical studies.Methods Mol Biol,2011,726:223-241.
    [12] Sitharaman B,Kissell KR,Hartman KB,et al.Superparamagnetic gadonanotubes are high-performance MRI contrast agents.Chem Commun(Camb),2005,3l:3915-3917.
    [13] Wu H,Liu G,Zhuang Y,et al.The behavior after intravenous injee-tion in mice of multiwalled carbon nanotube/Fe304 hybrid MRI contrast agents.Biomaterials,2011,32(21):4867-4876.
    [14] Laeerda L,Bianco A,Prato M,et al.Carbon nanotubes as nanomedieines:from toxicology to pharmacology.Adv Drug Deliv Rev,2006,58(14):1460-1470.
    [15] Foldvari M,Bagonluri M.Carbon nanotubes as functional excipi-ents for nanomedicines:Ⅱ. Drug deliveryand biocompatibility issues.Nanomedicine,2008,4(3):183-200.
    [16] Johnston HJ,Hutchison GR,Christensen FM,et al.A critical review of the biological mechanisms underlying the in vivo and invitro tox-icity of carbon nanotubes:The contribution of physico-chemi-calcharaeteristics.Nanotoxieology,2010,4(2):207-246.
    [17] Barras A,Szunerits S,Marcon L et al.Functionalization of diamond nanoparticles using "click" chemistry.Langmuir,2010,26(16):13168-13172.
    [18] Mohan N,Chen CS,Hsieh HH,et al.In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis ele-gans.Nano Lett,2010,10(9):3692-3699.
    [19] Schrand AM,Huang H,Carlson C,et al.Are diamond nanoparticles cytotoxic?.J Phys Chem B,2007,111(1):2-7.
    [20] Chow EK,Zhang XQ,Chen M,et al.Nanodiamond therapeutic de-livery agents mediate enhanced chemoresistant tumortreatment.Sci Transl Med,2011,3(73):73ra21.
    [21] Fu CC,Lee HY,Chen K,et al.Characterization and application of single fluorescent nanodiamonds as cellularbiomarkers.Proc Natl Acad Sci USA,2007,104(3):727-732.
    [22] Chang IP,Hwang KC,Chiang CS.Preparation of fluorescent magnetic nanodiamonds and cellular imaging.J Am Chem Soc,2008,130(46):15476-15481.
    [23] Steinert S,Dolde F,Neumann P,et al.High sensitivity magnetic imaging using all array of spins in diamond.Rev Sci Instrum,2010,81(4):043705.
    [24] Sehoenfeld RS,Harneit W.Real time magnetic field sensing and imaging using a single spin in diamond.Phys Rev Lett,2011,106(3):030802.
    [25] Niemeyer CM,Ceyhan B,Noyong M,et al.Bifunetional DNA-gold nanoparticle conjugates as building blocks for theself-assembly of cress-linked particle layers.Biochem Biophys Res Commun,2003,31l(4):995-999.
    [26] Tan W,Wang K,He X,et al.Bionanotechnology based on silica nanoparticles.Med Res Rev,2004,24(5):621-638.
    [27] Guerrero.Martinez A,Perez-Juste J,Liz-Marzan LM.Recent-progress on silica coating of nanoparticles and related nanomateri-als.Adv Mater,2010,22(11):1182-1195.
    [28] Lou MY,Jia QL,Wang DP,et al.The preparation and properties of monodisperse core-shell silica magneticmicrospheres.J Mater Sci Mater Med,2008,19(1):217-223.
    [29] Liu T,Li D,Zou Y,et al.Preparation of metal@silica core-shell particle films by interfacialself-assembly.J Colloid Interface Sci,2010,350(1):58-62.
    [30] Chen YS,Frey W,Kim S,et al.Enhanced thermal stability of sili-ca-coated gold nanoreds for photoacousticimaging and image-gnid-ed therapy.Opt Express,2010,18(9):8867-8878.
    [31] Chen YS,Frey W,Kim S,et al.Silica-coated gold nanoreds as photoacoustic signal nanoamplifiers.Nano Lett,2011,11(2):348-354.
    [32] Rabolli V,Thomassen LC,Princen C,et al.Influence of size,surface area and microporesity on the in vitro cytotoxicactivity of anlorphous silica nanoparticles in different cell types.Nanotoxicology,2010,4(3):307-318.
    [33] Rabolli V,Thomassen LC,Uwambayinema F,et al.The eytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.Toxicol Lett,2011,206(2):197-203.
    [34] Thomassen LC,Aerts A,Rabolli V,et al.Synthesis and characteri-zation of stable monodisperse silica nanoparticle solsfor in vitro cy-totoxicity testing.Langmuir,2010,26(1):328-335.
    [35] Hirsch LR,Gobin AM,Lowery AR,et al.Metal nanoshells.Ann Biomed Eng,2006,34(1):15-22.
    [36] Jiang L,Qian J,Cai F,et al.Raman reporter-coated gold nanoreds and their applications in muhimodal optical imaging of cancer cells.Anal Bioanal Chem,2011,400(9):2793-2800.
    [37] Jain PK,Huang X,El-Sayed IH,et al.Noble metals on the nanoscale:optical and photothermal properties and someapplications in imaging,sensing,biology,and medicine.Acc Chem Res,2008,41(12):1578-1586.
    [38] Lee KS,El-Sayed MA.Gold and silver nanoparticles in sensing and imaging:sensitivity of plasmonresponse to size,shape,and metal 329 composition.J Phys Chem B,2006,110(39):19220-19225.
    [39] Prevo BG,Esakoff SA,Mikhailovsky A,et al.Scalable routes to gold nanoshells with tunable sizes and response tonear-infrared pulsed-laser irradiation.Small,2008,4(8):1183-1195.
    [40] Khlebtsov N,Dykman L.Biodistribution and toxicity of engineered gold nanoparticles:a review of invitro and in vivo studies.Chem Soc Rev,2011,40(3):1647-1671.
    [41] Mulder WJ,Strijkers GJ,van Tilborg GA,et al.Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.NMR Biomed,2006,19(1):142-164.
    [42] Al-Jamal WT,Kostarelos K.Liposomes:from a clinically estab-lished drug delivery system to a nanoparticleplatform for theranostic nanomedicine.Acc Chem Res,2011,44(10):1094-1104.
    [43] Ferrara KW,Borden MA,Zhang H.Lipid-shelled vehicles:engi-neering for ultrasound molecular imaging and drugdelivery.Acc Chem Res,2009,42(7):881-892.
    [44] van Schooneveld MM,Vucic E,Koole R,et al.Improved biocom-patibility and pharmacokinetics of silica nanoparticles by meansof a lipid coating:a muhimodality investigation.Nano Lett,2008,8(8):2517-2525.
    [45] van Schooneveld MM,Cormode DP,Koole R,et al.A fluorescent,paramagnetic and PEGylated gold/silica nanoparticle for MR/,CT and fluorescence imaging.Contrast Media Mol Imaging,2010,5(4):231-236.
    [46] Talelli M,Iman M,Varkouhi AK,et al.Core-crosslinked polymeric micelles with controlled release of covalentlyentrapped doxorubicin.Biomaterials,2010,31(30):7797-7804.
    [47] Vukomanovic M,Zavasnik-Bergant T,Bracko I,et al.Poly(D,L-lactide-co-glycolidel)/hydro-xyapatite core-shell nanospheres.Part 3:properties of hydrexyapatite nano-rods and investigation of a dis-tribution of thedrug within the composite.Colloids Surf B Biointerfaces,2011,87(2):226-235.
    [48] Talelli M,Rijcken CJ,Oliveira S,et al.Reprint of "Nanobody-shell functionalized thermosensitive core-crosslinkedpolymefic micelles for active drug targeting".J Control Release,2011,153(1):93-102.
    [49] Shiraishi K,Kawano K,Minowa T,et al.Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI cont-rast agents.J Control Release,2009,136(1):14-20.
  • [1] 唐宇辉陈跃 . 纳米材料在多模式显像探针中的应用. 国际放射医学核医学杂志, 2011, 35(6): 325-329. doi: 10.3760/cma.j.issn.1673-4114.2011.06.002
    [2] 刘金剑刘鉴峰 . 纳米材料在核医学中的应用. 国际放射医学核医学杂志, 2010, 34(6): 326-329. doi: 10.3760/cma.j.issn.1673-4114,2010.06.002
    [3] 刘金剑刘鉴峰 . 纳米材料在核医学中的应用. 国际放射医学核医学杂志, 2010, 34(6): 326-329. doi: 10.3760/cma.j.issn.1673-4114.2010.06.002
    [4] 陈娜涂彧张旭光 . 纳米粒子在协同光动力放射治疗中的作用. 国际放射医学核医学杂志, 2010, 34(5): 318-320. doi: 10.3760/cma.j.issn.1673-4114.2010.05.018
    [5] 范永增袁耿彪 . 靶向性纳米药物对肿瘤的应用研究. 国际放射医学核医学杂志, 2010, 34(1): 16-19. doi: 10.3760/cma.j.issn.1673-4114.2010.01.004
    [6] 汪太松赵晋华宋建华 . PET-MRI和多模式肿瘤显像. 国际放射医学核医学杂志, 2011, 35(5): 261-264. doi: 10.3760/cma.j.issn.1673-4114.2011.05.002
    [7] 朱羽苑黄钢 . 分子核医学显像展望:多参数分子显像时代. 国际放射医学核医学杂志, 2010, 34(3): 129-134. doi: 10.3760/cma.j.issn.1673-4114.2010.03.001
    [8] 龚佳丽赵晋华 . 多模态纳米分子探针在动物模型易损斑块中靶向分子成像的研究进展. 国际放射医学核医学杂志, 2020, 44(10): 661-666. doi: 10.3760/cma.j.cn121381-201909035-00074
    [9] 陈顺军程兵 . 肿瘤细胞凋亡核素显像分子探针研究进展. 国际放射医学核医学杂志, 2016, 40(2): 149-153. doi: 10.3760/cma.j.issn.1673-4114.2016.02.013
    [10] 白景明李亚明 . 体内多药耐药的显像研究. 国际放射医学核医学杂志, 1999, 23(5): 208-212.
  • 加载中
计量
  • 文章访问数:  1524
  • HTML全文浏览量:  145
  • PDF下载量:  2
出版历程
  • 收稿日期:  2011-07-26

纳米材料在多模式显像探针中的应用

  • 泸州医学院附属医院核医学科, 643000

摘要: 随着多模式显像技术的发展,多模式显像探针的开发利用成为研究热点。但是要使各功能探针的灵敏度达到最佳配比,从而真正实现多模式显像却是一大难点,由于纳米材料体积小、物理及化学性质可塑性强,在各探针的连接、修饰、配比等更方面具有更大的灵活性,故已成为研究多模式显像探针的新宠,同时取得了很大进展。该文着重讨论了纳米材料的属性及在多模式显像探针中的应用与进展。

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回