[1] Van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet, 2011, 378(9804): 1741-1755.  doi: 10.1016/S0140-6736(11)60165-7
[2] Patel AR, Wedzicha JA, Hurst JR. Reduced lung-cancer mortality with CT screening. N Engl J Med, 2011, 365(21): 2035.  doi: 10.1056/NEJMc1110293
[3] Sox HC. Better evidence about screening for lung cancer. N Engl J Med, 2011, 365(5): 455-457.  doi: 10.1056/NEJMe1103776
[4] Heuvers ME, Stricker BH, Aerts JG. Generalizing lung-cancer screening results. N Engl J Med, 2012, 366(2): 192-193.  doi: 10.1056/NEJMc1111935
[5] Xie Y, Minna JD. A lung cancer molecular prognostic test ready for prime time. Lancet, 2012, 379(9818): 785-787.
[6] Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol, 2012, 13(1): e23-31.  doi: 10.1016/S1470-2045(11)70129-2
[7] Wang W, Li Q, Takeuchi S, et al. Met kinase inhibitor E7050 reverses three different mechanisms of hepatocyte growth factor-induced tyrosine kinase inhibitor resistance in EGFR mutant lung cancer. Clin Cancer Res, 2012, 18(6): 1663-1671.  doi: 10.1158/1078-0432.CCR-11-1171
[8] Su KY, Chen HY, Li KC, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol, 2012, 30(4): 433-440.
[9]

Politi K, Lynch TJ. Two sides of the same coin: EGFR exon 19 deletions and insertions in lung cancer. Clin Cancer Res, 2012, 18(6): 1490-1492[2012-03-15]. http://www.ncbi.nlm.nih.gov/pubmed?term=Politi%20K%2C%20Lynch%20TJ.%20Two%20sides%20of%20the%20same%20coin%3A%20EGFR%20exon%2019%20deletions%20and%20insertions%20in%20lung%20cancer. [published online ahead of print Feb 8, 2012].

[10] Pirker R, Pereira JR, von Pawel J, et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol, 2012, 13(1): 33-42.  doi: 10.1016/S1470-2045(11)70318-7
[11] Kim HR, Shim HS, Chung JH, et al. Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer, 2012, 118(3): 729-739.
[12] Han CB, Ma JT, Li F, et al. EGFR and KRAS mutations and altered c-Met gene copy numbers in primary non-small cell lung cancer and associated stage N2 lymph node-metastasis. Cancer Lett, 2012, 314(1): 63-72.  doi: 10.1016/j.canlet.2011.09.012
[13]

Yoshioka H, Yamamoto S, Hanaoka H, et al. In vivo therapeutic effect of CDH3/P-cadherin-targeting radioimmunotherapy[J/OL]. Cancer Immunol Immunother, 2012, 61[2012-03-15]. http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshioka%20H%2C%20Yamamoto%20S%2C%20Hanaoka%20H%2C%20et%20al.%20In%20vivo%20therapeutic%20effect%20of%20CDH3%2FP-cadherin-targeting%20radioimmunotherapy. [published online ahead of print Jan 6, 2012].

[14]

D'Arienzo M, Cicone F, Chiacchiararelli L, et al. Three-dimensional patient-specific dosimetry in radioimmunotherapy with 90Y-ibritumomab-tiuxetan. Cancer Biother Radiopharm, 2012, 27(2): 124-133[2012-03-15]. http://www.ncbi.nlm.nih.gov/pubmed?term=D'Arienzo%20M%2C%20Cicone%20F%2C%20Chiacchiararelli%20L%2C%20et%20al.%20Three-dimensional%20patient-specific%20dosimetry%20in%20radioimmunotherapy%20with%2090Y-ibritumomab-tiuxetan.%20. [published online ahead of print Jan 27, 2012].

[15] Khawli LA, Hu P, Epstein AL. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb Exp Pharmacol, 2008, 181: 291-328.
[16] Yu LK, Ju DW, Chen WP, et al. 131I-chTNT radioimmunotherapy of 43 patients with advanced lung cancer. Cancer Biother Radiopharm, 2006, 21(1): 5-14.  doi: 10.1089/cbr.2006.21.5
[17] Chen SL, Yu LK, Jiang CY, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. Clin Oncol, 2005, 23(7): 1538-1547.  doi: 10.1200/JCO.2005.06.108
[18] Boerman OC, Koppe MJ, Postema EJ, et al. Radionuclide therapy of cancer with radiolabeled antibodies. Anticancer Agents Med Chem, 2007, 7(3): 335-343.  doi: 10.2174/187152007780618126
[19] McLendon RE, Akabani G, Friedman HS, et al. Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol, 2007, 34(4): 405-413.
[20] Street HH, Goris ML, Fisher GA, et al. Phase I study of 131I-chimeric(ch) TNT-1/B monoclonal antibody for the treatment of advanced colon cancer. Cancer Biother Radiopharm, 2006, 21(3): 243-256.  doi: 10.1089/cbr.2006.21.243
[21] Hdeib A, Sloan AE. Convection-enhanced delivery of 131I-chTNT-1/B mAB for treatment of high-grade adult gliomas. Expert Opin Biol Ther, 2011, 11(6): 799-806.  doi: 10.1517/14712598.2011.579097
[22] Yan Y, Zhang HF, Zhang YD, et al. Transfection of the human sodium/iodide symporter (NIS) gene with liposomes and the expression of the NIS protein in human lung A549 cancer cells. Chin J Clin Oncol, 2008, 5(1): 30-34.  doi: 10.1007/s11805-008-0030-6
[23] Guo R, Zhang YF, Liang S, et al. Sodium butyrate enhances the expression of baculovirus-mediated sodium/iodide symporter gene in A549 lung adenocarcinoma cells. Nucl Med Commun, 2010, 31(10): 916-921.
[24] Niu G, Krager KJ, Graham MM, et al. Noninvasive radiological imaging of pulmonary gene transfer and expression using the human sodium iodide symporter. Eur J Nucl Med Mol Imaging, 2005, 32(5): 534-540.  doi: 10.1007/s00259-004-1715-6
[25] Shi YZ, Zhang J, Liu ZL, et al. Adenovirus-mediated and tumor-specific transgene expression of the sodium-iodide symporter from the human telomerase reverse transcriptase promoter enhances killing of lung cancer cell line in vitro. Chin Med J (Engl), 2010, 123(15): 2070-2076.
[26] Kang do Y, Lee HW, Choi PJ, et al. Sodium/iodide symporter expression in primary lung cancer and comparison with glucose transporter 1 expression. Pathol Int, 2009, 59(2): 73-79.