[1] Mota JM, Armstrong AJ, Larson SM, et al.  Measuring the unmeasurable: automated bone scan index as a quantitative endpoint in prostate cancer clinical trials[J]. Prostate Cancer Prostatic Dis, 2019, 22(4): 522-530.   doi: 10.1038/s41391-019-0151-4
[2]

Liu W, Li WX, Wang ZK, et al. Metabolically abnormal obesity increases the risk of advanced prostate cancer in Chinese patients undergoing radical prostatectomy[J/OL]. Cancer Manag Res, 2020, 12: 1779−1787[2021-02-04]. https://www.dovepress.com/metabolically-abnormal-obesity-increases-the-risk-of-advanced-prostate-peer-reviewed-fulltext-article-CMAR. DOI: 10.2147/CMAR.S242193.

[3] 李宁.  前列腺癌骨转移治疗的研究进展[J]. 肿瘤防治研究, 2020, 47(8): 641-646.   doi: 10.3971/j.issn.1000-8578.2020.19.1141
Li N.  Advances in treatment of patients with prostate cancer bone metastases[J]. Cancer Res Prev Treat, 2020, 47(8): 641-646.   doi: 10.3971/j.issn.1000-8578.2020.19.1141
[4] Sadik M, Hamadeh I, Nordblom P, et al.  Computer-assisted interpretation of planar whole-body bone scans[J]. J Nucl Med, 2008, 49(12): 1958-1965.   doi: 10.2967/jnumed.108.055061
[5] 程艳, 罗丽萍, 胡珊, 等.  骨显像剂异常浓聚程度及前列腺癌骨转移预测模型的单中心研究[J]. 中华肿瘤杂志, 2020, 42(10): 876-881.   doi: 10.3760/cma.j.cn112152-20190605-00356
Cheng Y, Luo LP, Hu S, et al.  Single-center study of the abnormal concentration of bone imaging agent and prostate cancer bone metastasis prediction model[J]. Chin J Oncol, 2020, 42(10): 876-881.   doi: 10.3760/cma.j.cn112152-20190605-00356
[6] 许阿磊, 徐慧琴, 汪会, 等.  精准定量SPECT/CT在乳腺癌骨转移诊断和疗效评价中的应用[J]. 肿瘤影像学, 2020, 29(2): 169-174.   doi: 10.19732/j.cnki.2096-6210.2020.02.016
Xu AL, Xu HQ, Wang H, et al.  Application of precise quantitative SPECT/CT in the diagnosis and efficacy evaluation of breast cancer bone metastasis[J]. Oncoradiology, 2020, 29(2): 169-174.   doi: 10.19732/j.cnki.2096-6210.2020.02.016
[7] Scher HI, Morris MJ, Stadler WM, et al.  Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3[J]. J Clin Oncol, 2016, 34(12): 1402-1418.   doi: 10.1200/JCO.2015.64.2702
[8] Imbriaco M, Larson SM, Yeung HW, et al.  A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index[J]. Clin Cancer Res, 1998, 4(7): 1765-1772.
[9]

A Task Group of Committee 2 of the International Commission. Report of the task group on reference man[R]. New York: Pergamon Press, 1975.

[10] Sabbatini P, Larson SM, Kremer A, et al.  Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer[J]. J Clin Oncol, 1999, 17(3): 948-957.   doi: 10.1200/JCO.1999.17.3.948
[11] Dennis ER, Jia XY, Mezheritskiy IS, et al.  Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer[J]. J Clin Oncol, 2012, 30(5): 519-524.   doi: 10.1200/JCO.2011.36.5791
[12] Ulmert D, Kaboteh R, Fox JJ, et al.  A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the bone scan index[J]. Eur Urol, 2012, 62(1): 78-84.   doi: 10.1016/j.eururo.2012.01.037
[13]

Kaboteh R, Damber JE, Gjertsson P, et al. Bone scan index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy[J/OL]. EJNMMI Res, 2013, 3(1): 9[2021-02-04]. https://ejnmmires.springeropen.com/articles/10.1186/2191-219X-3-9. DOI: 10.1186/2191-219X-3-9.

[14]

Kaboteh R, Gjertsson P, Leek H, et al. Progression of bone metastases in patients with prostate cancer-automated detection of new lesions and calculation of bone scan index[J/OL]. EJNMMI Res, 2013, 3(1): 64[2021-02-04]. https://ejnmmires.springeropen.com/articles/10.1186/2191-219X-3-64. DOI: 10.1186/2191-219X-3-64.

[15] Armstrong AJ, Kaboteh R, Carducci MA, et al.  Assessment of the bone scan index in a randomized placebo-controlled trial of tasquinimod in men with metastatic castration-resistant prostate cancer (mCRPC)[J]. Urol Oncol, 2014, 32(8): 1308-1316.   doi: 10.1016/j.urolonc.2014.08.006
[16] Petersen LJ, Mortensen JC, Bertelsen H, et al.  Computer-assisted interpretation of planar whole-body bone scintigraphy in patients with newly diagnosed prostate cancer[J]. Nucl Med Commun, 2015, 36(7): 679-685.   doi: 10.1097/MNM.0000000000000307
[17] Shintawati R, Achmad A, Higuchi T, et al.  Evaluation of bone scan index change over time on automated calculation in bone scintigraphy[J]. Ann Nucl Med, 2015, 29(10): 911-920.   doi: 10.1007/s12149-015-1021-3
[18] Anand A, Morris MJ, Kaboteh R, et al.  Analytic validation of the automated bone scan index as an imaging biomarker to standardize quantitative changes in bone scans of patients with metastatic prostate cancer[J]. J Nucl Med, 2016, 57(1): 41-45.   doi: 10.2967/jnumed.115.160085
[19] Anand A, Morris MJ, Kaboteh R, et al.  A preanalytic validation study of automated bone scan index: effect on accuracy and reproducibility due to the procedural variabilities in bone scan image acquisition[J]. J Nucl Med, 2016, 57(12): 1865-1871.   doi: 10.2967/jnumed.116.177030
[20]

Petersen LJ, Mortensen JC, Bertelsen H, et al. Prospective evaluation of computer-assisted analysis of skeletal lesions for the staging of prostate cancer[J/OL]. BMC Med Imaging, 2017, 17(1): 40[2021-02-04]. https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-017-0211-y. DOI: 10.1186/s12880-017-0211-y.

[21]

Wuestemann J, Hupfeld S, Kupitz D, et al. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance[J/OL]. Cancers (Basel), 2020, 12(9): 2654[2021-02-04]. https://www.mdpi.com/2072-6694/12/9/2654. DOI: 10.3390/cancers12092654.

[22] Yin TK, Chiu NT.  A computer-aided diagnosis for locating abnormalities in bone scintigraphy by a fuzzy system with a three-step minimization approach[J]. IEEE Trans Med Imaging, 2004, 23(5): 639-654.   doi: 10.1109/tmi.2004.826355
[23] Mitsui Y, Shiina H, Yamamoto Y, et al.  Prediction of survival benefit using an automated bone scan index in patients with castration-resistant prostate cancer[J]. BJU Int, 2012, 110(11 Pt B): E628-E634.   doi: 10.1111/j.1464-410X.2012.11355.x
[24] Donohoe KJ, Henkin RE, Royal HD, et al.  Procedure guideline for bone scintigraphy: 1.0. society of nuclear medicine[J]. J Nucl Med, 1996, 37(11): 1903-1906.
[25] Van den Wyngaert T, Strobel K, Kampen WU, et al.  The EANM practice guidelines for bone scintigraphy[J]. Eur J Nucl Med Mol Imaging, 2016, 43(9): 1723-1738.   doi: 10.1007/s00259-016-3415-4
[26]

Li DY, Lv H, Hao XY, et al. Prognostic value of bone scan index as an imaging biomarker in metastatic prostate cancer: a meta-analysis[J/OL]. Oncotarget, 2017, 8(48): 84449−84458[2021-02-04]. https://www.oncotarget.com/article/19680/text. DOI: 10.18632/oncotarget.19680.

[27]

Song HL, Jin S, Xiang P, et al. Prognostic value of the bone scan index in patients with metastatic castration-resistant prostate cancer: a systematic review and meta-analysis[J/OL]. BMC Cancer, 2020, 20(1): 238[2021-02-04]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-020-06739-y. DOI: 10.1186/s12885-020-06739-y.

[28] Schmidkonz C, Cordes M, Goetz TI, et al.  68Ga-PSMA-11 PET/CT derived quantitative volumetric tumor parameters for classification and evaluation of therapeutic response of bone metastases in prostate cancer patients[J]. Ann Nucl Med, 2019, 33(10): 766-775.   doi: 10.1007/s12149-019-01387-0
[29]

Wassberg C, Lubberink M, Sörensen J, et al. Repeatability of quantitative parameters of 18F-fluoride PET/CT and biochemical tumour and specific bone remodelling markers in prostate cancer bone metastases[J/OL]. EJNMMI Res, 2017, 7(1): 42[2021-02-04]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-017-0289-9. DOI: 10.1186/s13550-017-0289-9.

[30] Koizumi M, Wagatsuma K, Miyaji N, et al.  Evaluation of a computer-assisted diagnosis system, BONENAVI version 2, for bone scintigraphy in cancer patients in a routine clinical setting[J]. Ann Nucl Med, 2015, 29(2): 138-148.   doi: 10.1007/s12149-014-0921-y
[31] Isoda T, BaBa S, Maruoka Y, et al.  Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, BONENAVI, on bone scintigraphy images[J]. Asia Ocean J Nucl Med Biol, 2017, 5(1): 49-55.   doi: 10.22038/aojnmb.2016.7606