[1] Merz S, Steinhauser G, Hamada N.  Anthropogenic radionuclides in Japanese food: environmental and legal implications[J]. Environ Sci Technol, 2013, 47(3): 1248-1256.   doi: 10.1021/es3037498
[2] Steinhauser G, Brandl A, Johnson TE.  Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts[J]. Sci Total Environ, 2014, 470-471: 800-817.   doi: 10.1016/j.scitotenv.2013.10.029
[3] Merz S, Shozugawa K, Steinhauser G.  Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima Nuclear Accident[J]. Environ Sci Technol, 2015, 49(5): 2875-2885.   doi: 10.1021/es5057648
[4] Aoyama M, Kajino M, Tanaka TY, et al.  134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean[J]. J Oceanogr, 2016, 72(1): 67-76.   doi: 10.1007/s10872-015-0332-2
[5] 欧阳洁, 杨国胜, 马玲玲, 等.  大气污染物中人工放射性铯-钚-铀同位素示踪技术的发展与应用[J]. 化学进展, 2017, 29(12): 1446-1461.   doi: 10.7536/PC170744
Ouyang J, Yang GS, Ma LL, et al.  Development and application of fingerprints of radioactive ce-sium-plutonium-uranium isotopes as tracers in air pollution[J]. Prog Chem, 2017, 29(12): 1446-1461.   doi: 10.7536/PC170744
[6] Hou XL, Roos P.  Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples[J]. Anal Chim Acta, 2008, 608(2): 105-139.   doi: 10.1016/j.aca.2007.12.012
[7]

Yang GS, Tazoe H, Yamada M. Can 129I track 135Cs, 236U, 239Pu, and 240Pu apart from 131I in soil samples from Fukushima Prefecture, Japan?[J/OL]. Sci Rep, 2017, 7(1): 15369[2019-02-18]. https://www.ncbi.nlm.nih.gov/pubmed/29133826. DOI: 10.1038/s41598-017-15714-w.

[8]

Yang GS, Tazoe H, Yamada M. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident[J/OL]. Sci Rep, 2016, 6: 24119[2019-02-18]. https://www.ncbi.nlm.nih.gov/pubmed/27052481. DOI: 10.1038/srep24119.

[9] Zheng J, Tagami K, Bu WT, et al.  135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident[J]. Environ Sci Technol, 2014, 48(10): 5433-5438.   doi: 10.1021/es500403h
[10] Zheng J, Bu WT, Tagami K, et al.  Determination of 135Cs and 135Cs/137Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry[J]. Anal Chem, 2014, 86(14): 7103-7110.   doi: 10.1021/ac501712m
[11]

Nishihara K, Iwamoto H, Suyama K. Estimation of fuel compositions in Fukushima-Daiichi Nuclear Power Plant[R]. JAEA-Data/Code 2012-018, Ibaraki: Japan Atomic Energy Agency, 2012.

[12]

Yang GS, Zheng J, Tagami K, et al. Plutonium concentration and isotopic ratio in soil samples from cen-tral-eastern Japan collected around the 1970s[J/OL]. Sci Rep, 2015, 5: 9636[2019-02-18]. https://www.ncbi.nlm.nih.gov/pubmed/25881009. DOI: 10.1038/srep09636.

[13]

Zheng J, Tagami K, Watanabe Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J/OL]. Sci Rep, 2012, 2: 304[2019-02-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297203/?report=abstract. DOI: 10.1038/srep00304.

[14] Zheng J, Tagami K, Uchida S.  Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known[J]. Environ Sci Technol, 2013, 47(17): 9584-9595.   doi: 10.1021/es402212v
[15] Bu WT, Fukuda M, Zheng J, et al.  Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible[J]. Environ Sci Technol, 2014, 48(16): 9070-9078.   doi: 10.1021/es502480y
[16]

IAEA (International Atomic Energy Agency). Handbook of parameter values for the prediction of radio-nuclide transfer in terrestrial and freshwater environments[R]. IAEA-trs-472, Vienna: IAEA, 2009.

[17] Ni YY, Wang ZT, Zheng J, et al.  The transfer of fallout plutonium from paddy soil to rice: a field study in Japan[J]. J Environ Radioact, 2019, 196: 22-28.   doi: 10.1016/j.jenvrad.2018.10.010
[18] Men W, Zheng J, Wang H, et al.  Pu isotopes in the seawater off Fukushima Daiichi Nuclear Power Plant site within two months after the severe nuclear accident[J]. Environ Pollut, 2019, 246: 303-310.   doi: 10.1016/j.envpol.2018.12.007
[19] Shinonaga T, Steier P, Lagos M, et al.  Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions[J]. Environ Sci Technol, 2014, 48(7): 3808-3814.   doi: 10.1021/es404961w
[20] Bu WT, Zheng J, Ketterer ME, et al.  Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples-a review[J]. Anal Chim Acta, 2017, 995: 1-20.   doi: 10.1016/j.aca.2017.09.029
[21]

Yang GS, Tazoe H, Hayano K, et al. Isotopic compositions of 236U, 239Pu, and 240Pu in soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident[J/OL]. Sci Rep, 2017, 7, 13619[2019-02-18]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648813/. DOI: 10.1038/s41598-017-13998-6.

[22] Sakaguchi A, Steier P, Takahashi Y, et al.  Isotopic compositions of 236U and Pu isotopes in " black substances” collected from roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Environ Sci Technol, 2014, 48(7): 3691-3697.   doi: 10.1021/es405294s
[23]

Adachi K, Kajino M, Zaizen Y, et al. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident[J/OL]. Sci Rep, 2013, 3: 2554[2019-02-18]. https://www.ncbi.nlm.nih.gov/pubmed/23989894. DOI: 10.1038/srep02554.

[24] Satou Y, Sueki K, Sasa K, et al.  Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident[J]. Geochem J, 2018, 52(2): 137-143.   doi: 10.2343/geochemj.2.0514
[25] Higaki S, Kurihara Y, Yoshida H, et al.  Discovery of non-spherical heterogeneous radiocesium-bearing particles not derived from unit 1 of the Fukushima Dai-ichi Nuclear Power Plant, in residences five years after the accident[J]. J Environ Radioact, 2017, 177: 65-70.   doi: 10.1016/j.jenvrad.2017.06.006
[26] Kogure T, Yamaguchi N, Segawa H, et al.  Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant[J]. Microscopy, 2016, 65(5): 451-459.   doi: 10.1093/jmicro/dfw030
[27] Miura H, Kurihara Y, Sakaguchi A, et al.  Discovery of radiocesium-bearing microparticles in river water and their influence on the solid-water distribution coefficient (Kd) of radiocesium in the Kuchibuto River in Fukushima[J]. Geochem J, 2018, 52(2): 145-154.   doi: 10.2343/geochemj.2.0517
[28]

Yamaguchi N, Mitome M, Kotone AH, et al. Internal structure of cesium-bearing radioactive microparticles released from Fukushima Nuclear Power Plant[J/OL]. Sci Rep, 2016, 6: 20548[2019-02-18]. https://www.ncbi.nlm.nih.gov/pubmed/26838055. DOI: 10.1038/srep20548.

[29] Chen F, Hu J, Takahashi Y, et al.  Application of synchrotron radiation and other techniques in analysis of radioactive microparticles emitted from the Fukushima Daiichi Nuclear Power Plant accident-a review[J]. J Environ Radioact, 2019, 196: 29-39.   doi: 10.1016/j.jenvrad.2018.10.013
[30] Tsumune D, Tsubono T, Aoyama M, et al.  One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Biogeosciences, 2013, 10(8): 5601-5617.   doi: 10.5194/bg-10-5601-2013
[31] Kumamoto Y, Aoyama M, Hamajima Y, et al.  Radiocesium in the western subarctic area of the North Pacific ocean, Bering Sea, and Arctic Ocean in 2015 and 2017[J]. Polar Sci, , : -.   doi: 10.1016/j.polar.2018.08.007
[32]

Terada H, Yamaguchi I, Shimura T, et al. Regulation values and current situation of radioactive materials in food[J/OL]. J Natl Inst Public Health, 2018, 67(1): 21-23[2019-02-18]. https://www.niph.go.jp/journal/data/67-1/201867010004.pdf. DOI: 10.20683/jniph.67.1_21.

[33]

Ministry of Health, Labour and Welfare. Levels of radioactive contaminants in foods tested in respective prefectures[EB/OL]. [2019-02-18]. http://www.mhlw.go.jp/english/topics/2011eq/index_food_radioactive.html.

[34]

Fukushima Prefectural Government Japan. Fukushima Revitalization Station[EB/OL]. [2019-02-18]. http://www.pref.fukushima.lg.jp/site/portal-zhc.

[35] Takahashi J, Onda Y, Hihara D, et al.  Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. J Environ Radioact, 2018, 192: 172-180.   doi: 10.1016/j.jenvrad.2018.06.015
[36] Yoschenko V, Ohkubo T, Kashparov V.  Radioactive contaminated forests in Fukushima and Chernobyl[J]. J For Res, 2018, 23(1): 3-14.   doi: 10.1080/13416979.2017.1356681
[37] Matsunaga T, Nakanishi T, Atarashi-Andoh M, et al.  Year-round variations in the fluvial transport load of particulate 137Cs in a forested catchment affected by the Fukushima Daiichi Nuclear Power Plant accident[J]. J Radioanal Nucl Chem, 2016, 310(2): 679-693.   doi: 10.1007/s10967-016-4840-3
[38] Iwagami S, Onda Y, Tsujimura M, et al.  Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. J Environ Radioact, 2017, 166: 466-474.   doi: 10.1016/j.jenvrad.2016.07.025
[39] Yamaguchi I, Terada H, Kunugita N, et al.  Dose estimation from food intake due to the Fukushima Daiichi nuclear power plant accident[J]. J Natl Inst Public Health, 2013, 62(2): 138-143.
[40] Harada KH, Fujii Y, Adachi A, et al.  Dietary intake of radiocesium in adult residents in Fukushima Prefecture and neighboring regions after the Fukushima Nuclear Power Plant accident: 24-h Food-duplicate survey in December 2011[J]. Environ Sci Technol, 2013, 47(6): 2520-2526.   doi: 10.1021/es304128t
[41] Sato O, Nonaka S, Tada JI.  Intake of radioactive materials as assessed by the duplicate diet method in Fukushima[J]. J Radiol Protect, 2013, 33(4): 823-838.   doi: 10.1088/0952-4746/33/4/823
[42] Tsutsumi T, Nabeshi H, Ikarashi A, et al.  Estimation of the committed effective dose of radioactive cesium and potassium by the market basket method[J]. Food Hyg Saf Sci, 2013, 54(1): 7-13.   doi: 10.3358/shokueishi.54.7