[1] Siegel RL, Miller KD, Jemal A.  Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 145-164.   doi: 10.3322/caac.21601
[2]

Tilly H, da Silva MD, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2015, 26 (Suppl 5): Sv116−v125. DOI: 10.1093/annonc/mdv304.

[3] Gisselbrecht C, Glass B, Mounier N, et al.  Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era[J]. J Clin Oncol, 2010, 28(27): 4184-4190.   doi: 10.1200/JCO.2010.28.1618
[4] Crump M, Neelapu SS, Farooq U, et al.  Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study[J]. Blood, 2017, 130(16): 1800-1808.   doi: 10.1182/blood-2017-03-769620
[5] Barrington SF, Mikhaeel NG, Kostakoglu L, et al.  Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group[J]. J Clin Oncol, 2014, 32(27): 3048-3058.   doi: 10.1200/JCO.2013.53.5229
[6] 中华医学会核医学分会.  淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版)[J]. 中华核医学与分子影像杂志, 2021, 41(3): 161-169.   doi: 10.3760/cma.j.cn321828-20210129-00018
Chinese Society of Nuclear Medicine.  Clinical practice guideline of 18F-FDG PET/CT and PET/MR in lymphoma (2021 edition)[J]. Chin J Nucl Med Mol Imaging, 2021, 41(3): 161-169.   doi: 10.3760/cma.j.cn321828-20210129-00018
[7]

Kanoun S, Tal I, Berriolo-Riedinger A, et al. Influence of software tool and methodological aspects of total metabolic tumor volume calculation on baseline [18F]FDG PET to predict survival in Hodgkin lymphoma[J/OL]. PLoS One, 2015, 10(10): e0140830[2021-12-12]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140830. DOI: 10.1371/journal.pone.0140830.

[8] Barrington SF, Meignan M.  Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden[J]. J Nucl Med, 2019, 60(8): 1096-1102.   doi: 10.2967/jnumed.119.227249
[9] Barrington SF, Zwezerijnen BGJC, de Vet HCW, et al.  Automated segmentation of baseline metabolic total tumor burden in diffuse large B-cell lymphoma: which method is most successful? A study on behalf of the PETRA consortium[J]. J Nucl Med, 2021, 62(3): 332-337.   doi: 10.2967/jnumed.119.238923
[10] Zwezerijnen GJC, Eertink JJ, Burggraaff CN, et al.  Interobserver agreement on automated metabolic tumor volume measurements of Deauville score 4 and 5 lesions at interim 18F-FDG PET in diffuse large B-cell lymphoma[J]. J Nucl Med, 2021, 62(11): 1531-1536.   doi: 10.2967/jnumed.120.258673
[11] Capobianco N, Meignan M, Cottereau AS, et al.  Deep-learning 18F-FDG uptake classification enables total metabolic tumor volume estimation in diffuse large B-cell lymphoma[J]. J Nucl Med, 2021, 62(1): 30-36.   doi: 10.2967/jnumed.120.242412
[12] Blanc-Durand P, Jégou S, Kanoun S, et al.  Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1362-1370.   doi: 10.1007/s00259-020-05080-7
[13] Bari A, Marcheselli L, Sacchi S, et al.  Prognostic models for diffuse large B-cell lymphoma in the rituximab era: a never-ending story[J]. Ann Oncol, 2010, 21(7): 1486-1491.   doi: 10.1093/annonc/mdp531
[14] Zhou Z, Sehn LH, Rademaker AW, et al.  An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era[J]. Blood, 2014, 123(6): 837-842.   doi: 10.1182/blood-2013-09-524108
[15] Shagera QA, Cheon GJ, Koh Y, et al.  Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1417-1427.   doi: 10.1007/s00259-019-04309-4
[16] Zhao P, Yu T, Pan Z.  Prognostic value of the baseline 18F-FDG PET/CT metabolic tumour volume (MTV) and further stratification in low-intermediate (L-I) and high-intermediate (H-I) risk NCCNIPI subgroup by MTV in DLBCL MTV predict prognosis in DLBCL[J]. Ann Nucl Med, 2021, 35(1): 24-30.   doi: 10.1007/s12149-020-01531-1
[17] Alizadeh AA, Eisen MB, Davis RE, et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000, 403(6769): 503-511.   doi: 10.1038/35000501
[18] Lenz G, Wright G, Dave SS, et al.  Stromal gene signatures in large-B-cell lymphomas[J]. N Engl J Med, 2008, 359(22): 2313-2323.   doi: 10.1056/NEJMoa0802885
[19] Rosenwald A, Wright G, Chan WC, et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002, 346(25): 1937-1947.   doi: 10.1056/NEJMoa012914
[20] Green TM, Young KH, Visco C, et al.  Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone[J]. J Clin Oncol, 2012, 30(28): 3460-3467.   doi: 10.1200/JCO.2011.41.4342
[21] Johnson NA, Slack GW, Savage KJ, et al.  Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone[J]. J Clin Oncol, 2012, 30(28): 3452-3459.   doi: 10.1200/JCO.2011.41.0985
[22] Horn H, Ziepert M, Becher C, et al.  MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma[J]. Blood, 2013, 121(12): 2253-2263.   doi: 10.1182/blood-2012-06-435842
[23] Toledano MN, Desbordes P, Banjar A, et al.  Combination of baseline FDG PET/CT total metabolic tumour volume and gene expression profile have a robust predictive value in patients with diffuse large B-cell lymphoma[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 680-688.   doi: 10.1007/s00259-017-3907-x
[24] Cottereau AS, Lanic H, Mareschal S, et al.  Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2016, 22(15): 3801-3809.   doi: 10.1158/1078-0432.CCR-15-2825
[25] Araf S, Korfi K, Bewicke-Copley F, et al.  Genetic heterogeneity highlighted by differential FDG-PET response in diffuse large B-cell lymphoma[J]. Haematologica, 2020, 105(6): 318-321.   doi: 10.3324/haematol.2019.242206
[26] Cottereau AS, Nioche C, Dirand AS, et al.  18F-FDG PET dissemination features in diffuse large B-cell lymphoma are predictive of outcome[J]. J Nucl Med, 2020, 61(1): 40-45.   doi: 10.2967/jnumed.119.229450
[27] Cottereau AS, Meignan M, Nioche C, et al.  Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT[J]. Ann Oncol, 2021, 32(3): 404-411.   doi: 10.1016/j.annonc.2020.11.019
[28] Shah HJ, Keraliya AR, Jagannathan JP, et al.  Diffuse large B-cell lymphoma in the era of precision oncology: how imaging is helpful[J]. Korean J Radiol, 2017, 18(1): 54-70.   doi: 10.3348/kjr.2017.18.1.54
[29]

Malek E, Sendilnathan A, Yellu M, et al. Metabolic tumor volume on interim PET is a better predictor of outcome in diffuse large B-cell lymphoma than semiquantitative methods[J/OL]. Blood Cancer J, 2015, 5(7): e326[2021-12-12]. https://www.nature.com/articles/bcj201551. DOI: 10.1038/bcj.2015.51.

[30] Oñate-Ocaña LF, Cortés V, Castillo-Llanos R, et al.  Metabolic tumor volume changes assessed by interval 18fluorodeoxyglucose positron emission tomography-computed tomography for the prediction of complete response and survival in patients with diffuse large B-cell lymphoma[J]. Oncol Lett, 2018, 16(2): 1411-1418.   doi: 10.3892/ol.2018.8817