[1] Wu VW, Kwong DL, Sham JS. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol, 2004, 71(2): 201-206.  doi: 10.1016/j.radonc.2004.03.004
[2] Liang SB, Sun Y, Liu LZ, et al. Extension of local disease in nasopharyngeal carcinoma detected by magnetic resonance imaging: improvement of clinical target volume delineation. Int J Radiat Oncol Biol Phys, 2009, 75(3): 742-750.  doi: 10.1016/j.ijrobp.2008.11.053
[3] Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy(MD-CRT): biological Imaging and biological conformality. Int J Radiat Oncol Biolphys, 2000, 47(3): 551-560.  doi: 10.1016/S0360-3016(00)00467-3
[4] 何侠, 朱向帜, 黄德健, 等. 磁共振弥散加权成像和PET/CT在鼻咽癌调强放射治疗中的应用. 肿瘤学杂志, 2008, 14(10): 783-786.
[5] Heron DE, Andrade RS, Flickinger J, et al. Hybrid PET/CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys, 2004, 60(5): 1419-1424.  doi: 10.1016/j.ijrobp.2004.05.037
[6] 何侠, 朱向帜, 翟振宇, 等. MR/CT和18FDG PET/CT对鼻咽癌肿瘤靶区勾画比较研究. 齐齐哈尔医学院学报, 2007, 28(24): 2945-2948.  doi: 10.3969/j.issn.1002-1256.2007.24.001
[7] Schwartz DL, Ford EC, Rajendran J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck, 2005, 27(6): 478-487.  doi: 10.1002/hed.20177
[8] Breen SL, Publicover, De-Silva S, et al. Intraobserver and interobserver variability in GTV delineation on FDG-PET/CT images of head and neck cancers. Int J Radiat Oncol Biol Phys, 2007, 68(3): 763-770.  doi: 10.1016/j.ijrobp.2006.12.039
[9] Zheng XK, Chen LH, Wang QS, et al. Influence of FDG-PET on computed tomography-based radiotherapy planning for locally reurcrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys, 2007, 69(5): 1381-1388.  doi: 10.1016/j.ijrobp.2007.05.033
[10] Zheng XK, Chen LH, Wang QS, et al. Influence of 18F-fluorodeoxyglucose positron emission tomography on salvage treatment decision making for locally persistent nasopharyngeal carcinoma. Int Radiat Oncol Biol Phys, 2006, 65(4): 1020-1025.  doi: 10.1016/j.ijrobp.2006.02.037
[11] Murakami R, Uozumi H, Hirai T, et al. Impact of FDG-PET/CT fused imaging on tumor volume assessment of head-and-neck squamous cell carcinoma: intermethod and interobserver variations. Acta Radiol, 2008, 49(6): 693-699.  doi: 10.1080/02841850802027034
[12] Guido A, Fuccio L, Rombi B, et al. Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2009, 73(3): 759-763.  doi: 10.1016/j.ijrobp.2008.04.059
[13] Heron DE, Andrade RS, Flickinger J, el al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancer: a brief technical report. Int J Radiat Oncol Biol Phys, 2004, 60(5): 1419-1424.  doi: 10.1016/j.ijrobp.2004.05.037
[14] Koshy M, Paulino AC, Howell R, et al. F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck, 2005, 27(6): 494-502.  doi: 10.1002/hed.20179
[15] Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys, 2003, 56(1): 83-88.  doi: 10.1016/S0360-3016(03)00073-7
[16] Skala M, Holloway L, Bailey M, et al. Australia-wide comparison of intensity modulated radiation therapy prostate plans. Australas Radiol, 2005, 49(3): 222-229.  doi: 10.1111/j.1440-1673.2005.01419.x
[17] Gagne IM, Robinson DM. The impact of tumor motion upon CT image integrity and target delineation. Med Phys, 2004, 31(12): 3378-3392.  doi: 10.1118/1.1799291
[18] Yu H, Caldwell C, Mah K, et al. Automated radiation rargeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys, 2009, 75(2): 618-625.  doi: 10.1016/j.ijrobp.2009.04.043
[19] Steenbakkers RJ, Duppen JC, Fitton I. Reduction of observer varition using matched CT-PET for lung cancer delineation: A three-dimensional analysis. Int J Radiat Oncol Biol Phys, 2006, 64(2): 435-448.  doi: 10.1016/j.ijrobp.2005.06.034
[20] Vesprini D, Ung Y, Kamra J, et al. The addition of 18-fluorodeoxyglucose positron emission tomography(FDG-PET) to CT based radiotherapy planning of carcinoma of the esophagus decreases both the intra-and-inter observer variability of GTV delineation. Int J Radiat Oncol Biol Phys, 2006, 66(Suppl 3): 299-300.
[21] Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol, 2005, 6(2): 112-117.  doi: 10.1016/S1470-2045(05)01737-7
[22] Bentzen SM. Dose painting and theragnostic imaging: towards the prescription, planning and delivery of biologically targeted dose distributions in external beam radiation oncology. Cancer Treat Res, 2008, 139(1): 40-61.
[23] Aerts HJ, van Baardwijk AA, Petit SF, et al. Identification of residual metabolicactive areas within individual NSCLC tumours using a pre-radiotherapy(18)fluorodeoxyglucose-PET-CT scan. Radiother Oncol, 2009, 91(3): 386-392.  doi: 10.1016/j.radonc.2009.03.006
[24] Abramyuk A, Tokalov S, Zophel K, et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?. Radither Oncol, 2009, 91(3): 399-404.  doi: 10.1016/j.radonc.2009.01.003
[25] Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys, 2008, 71(5): 1402-1407.  doi: 10.1016/j.ijrobp.2007.11.049
[26] Schütze C, Bergmann R, Yaromina A, et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol, 2007, 83(3): 311-315.  doi: 10.1016/j.radonc.2007.04.033
[27] Duprez F, De Neve W, De Gersem W, et al. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2010, 80(4): 1045-1055.
[28] El-Bassiouni M, Ciernik IF, Davis JB, et al. [18FDG]PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys, 2007, 69(1): 286-293.  doi: 10.1016/j.ijrobp.2007.04.053
[29] Kao CH, Hsieh TC, Yu CY, et al. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck cancer: a correlation study between suitable uptake value threshold and tumor parameters. Radiat Oncol, 2010, 5: 76.  doi: 10.1186/1748-717X-5-76
[30] Moule RN, Kayani L, Moinuddin SA, et al. The potential advantages of(18F)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer. Radiother Oncol, 2010, 97(2): 189-193.  doi: 10.1016/j.radonc.2010.04.025
[31] 肖建平, 徐国镇. 立体定向放射治疗: 提高鼻咽癌局部控制的有效方法. 癌症, 2010, 29(2): 192-131.
[32] 林少俊, 潘建基, 吴君心, 等. 鼻咽癌外照射加腔内近距离超分割推量照射的远期疗效分析. 癌症, 2007, 26(2): 208-211.
[33] 潘纯国, 吴少雄, 赵充, 等. 鼻咽癌常规放射治疗后颅底推量的临床价值评估. 肿瘤学杂志, 2010, 16(8): 648-652.
[34] Porceddu SV, Jarmolowski E, Hicks R, et al. Utility of positron emission tomography for the detection disease in residual neck nodes fater(chemo)radiotherapy in head and neck cancer. Head Neck, 2005, 27(3): 175-181.  doi: 10.1002/hed.20130
[35] Peng N, Yen S, Liu W, et al. Evaluation of the effect of radiation therapy to nasopharyngeal carcinoma by positron emission tomography with 2-F-18Fluoro-2-deoxy-D-glucose. Clin Positron Imaging, 2000, 3(2): 51-56.  doi: 10.1016/S1095-0397(00)00039-X
[36] Yen TC, Chang JT, Ng SH, et al. The value of 18F-FDG PET in the detection of stage M0 carcinoma of the nasopharynx. J Nucl Med, 2005, 46(3): 405-410.
[37] Molthoff CF, Klabers BM, Berkhof I, et al. Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice comparison of 2-deoxy-2[18F]fluoro-D-glucose(FDG)and 3-(18F)fluoro-3-deoxythymidine(FLT). Mol Imaging Biol, 2007, 9(6): 340-347.  doi: 10.1007/s11307-007-0104-5
[38] 袁建伟, 冯彦林, 冼伟均, 等. 利用18F-FDG PET-CT显像监测裸鼠鼻咽癌移植瘤早期放疗疗效的研究. 癌症, 2010, 29(4): 409-414.  doi: 10.3969/j.issn.1001-5930.2010.04.029