[1] Rindi G, Klimstra DS, Abedi-Ardekani B, et al.  A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal[J]. Mod Pathol, 2018, 31(12): 1770-1786.   doi: 10.1038/s41379-018-0110-y
[2] Garcia-Carbonero R, Sorbye H, Baudin E, et al.  ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas[J]. Neuroendocrinology, 2016, 103(2): 186-194.   doi: 10.1159/000443172
[3]

Malla S, Kumar P, Madhusudhan KS, et al. Radiology of the neuroendocrine neoplasms of the gastrointestinal tract: a comprehensive review[J/OL]. Abdom Radiol (NY), 2020, 9: 32960304[2019-06-09]. https://link.springer.com/article/10.1007/s00261-020-02773-3. DOI: 10.1007/s00261-020-02773-3.

[4]

Abdel-Rahman O. A real-world, population-based study for the incidence and outcomes of neuroendocrine neoplasms of unknown primary[J/OL]. Neuroendocrinology, 2020, 9: 32980845[2019-06-09]. https://www.karger.com/Article/Abstract/511812. DOI: 10.1159/000511812.

[5] Cuccurullo V, Prisco MR, Di Stasio GD, et al.  Nuclear medicine in patients with NET: radiolabeled somatostatin analogues and their brothers[J]. Curr Radiopharm, 2017, 10(2): 74-84.   doi: 10.2174/1874471010666170323115136
[6] Papotti M, Bongiovanni M, Volante M, et al.  Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis[J]. Virchows Arch, 2002, 440(5): 461-475.   doi: 10.1007/s00428-002-0609-x
[7]

Eychenne R, Bouvry C, Bourgeois M, et al. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy[J/OL]. Molecules, 2020, 25(17): 4012[2019-06-09]. https://www.mdpi.com/1420-3049/25/17/4012. DOI: 10.3390/molecules25174012.

[8]

Heppeler A, Froidevaux S, Mäcke HR, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy[J]. Chem A Eur J, 1999, 5(7): 1974−1981. DOI: 10.1002/(SICI)1521-3765(19990702)5:7<1974::AID-CHEM1974>3.0.CO;2-X.

[9] Asti M, De Pietri G, Fraternali A, et al.  Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC[J]. Nucl Med Biol, 2008, 35(6): 721-724.   doi: 10.1016/j.nucmedbio.2008.04.006
[10] Eisenwiener KP, Prata MI, Buschmann I, et al.  NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors[J]. Bioconjug Chem, 2002, 13(3): 530-541.   doi: 10.1021/bc010074f
[11] Yadav D, Ballal S, Yadav MP, et al.  Evaluation of [68Ga]Ga-DATA-TOC for imaging of neuroendocrine tumours: comparison with [68Ga]Ga-DOTA-NOC PET/CT[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 860-869.   doi: 10.1007/s00259-019-04611-1
[12]

Mansi R, Abid K, Nicolas GP, et al. A new 68Ga-labeled somatostatin analog containing two iodo-amino acids for dual somatostatin receptor subtype 2 and 5 targeting[J/OL]. EJNMMI Res, 2020, 10(1): 90[2019-06-09]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-020-00677-3. DOI: 10.1186/s13550-020-00677-3.

[13] Basu S, Parghane RV, Kamaldeep, et al.  Peptide receptor radionuclide therapy of neuroendocrine tumors[J]. Semin Nucl Med, 2020, 50(5): 447-464.   doi: 10.1053/j.semnuclmed.2020.05.004
[14] James ML, Hoehne A, Mayer AT, et al.  Imaging B cells in a mouse model of multiple sclerosis using 64Cu-rituximab PET[J]. J Nucl Med, 2017, 58(11): 1845-1851.   doi: 10.2967/jnumed.117.189597
[15] Pfeifer A, Knigge U, Binderup T, et al.  64Cu-DOTATATE PET for neuroendocrine tumors: a prospective head-to-jead comparison with 111In-DTPA-octreotide in 112 patients[J]. J Nucl Med, 2015, 56(6): 847-854.   doi: 10.2967/jnumed.115.156539
[16] Wadas TJ, Eiblmaier M, Zheleznyak A, et al.  Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors[J]. J Nucl Med, 2008, 49(11): 1819-1827.   doi: 10.2967/jnumed.108.054502
[17] Guo YJ, Ferdani R, Anderson CJ.  Preparation and biological evaluation of 64Cu labeled Tyr3-octreotate using a phosphonic acid-based cross-bridged macrocyclic chelator[J]. Bioconjug Chem, 2012, 23(7): 1470-1477.   doi: 10.1021/bc300092n
[18] Paterson BM, Roselt P, Denoyer D, et al.  PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate[J]. Dalton Trans, 2014, 43(3): 1386-1396.   doi: 10.1039/c3dt52647j
[19] Hostetler E, Edwards WB, Anderson CJ, et al.  Synthesis of 4-[18F]fluorobenzyl octreotide and biodistribution in tumor-bearing Lewis rats[J]. J Labelled Comp Radiopharm, 1999, 42(suppl 1): S720-722.
[20] Guhlke S, Wester HJ, Bruns C, et al.  (2-[18F]fluoropropionyl-(D)-phe1)-octreotide, a potential radiopharmaceutical for quantitative somatostatin receptor imaging with PET: synthesis, radiolabeling, in vitro validation and biodistribution in mice[J]. Nucl Med Biol, 1994, 21(6): 819-825.   doi: 10.1016/0969-8051(94)90161-9
[21] Wester HJ, Schottelius M, Scheidhauer K, et al.  PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide[J]. Eur J Nucl Med Mol Imaging, 2003, 30(1): 117-122.   doi: 10.1007/s00259-002-1012-1
[22] Meisetschläger G, Poethko T, Stahl A, et al.  Gluc-Lys-([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide[J]. J Nucl Med, 2006, 47(4): 566-573.
[23] Schirrmacher E, Wängler B, Cypryk M, et al.  Synthesis of p-(di-tert-butyl[18F]fluorosilyl)benzaldehyde ([18F]SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the 18F-labeling of N-amino-oxy derivatized peptides[J]. Bioconjug Chem, 2007, 18(6): 2085-2089.   doi: 10.1021/bc700195y
[24] Liu ZB, Pourghiasian M, Bénard F, et al.  Preclinical evaluation of a high-affinity 18F-trifluoroborate octreotate derivative for somatostatin receptor imaging[J]. J Nucl Med, 2014, 55(9): 1499-1505.   doi: 10.2967/jnumed.114.137836
[25] Laverman P, McBride WJ, Sharkey RM, et al.  A novel facile method of labeling octreotide with 18F-fluorine[J]. J Nucl Med, 2010, 51(3): 454-461.   doi: 10.2967/jnumed.109.066902
[26] Brabander T, van der Zwan WA, Teunissen JJM, et al.  Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors[J]. Clin Cancer Res, 2017, 23(16): 4617-4624.   doi: 10.1158/1078-0432.CCR-16-2743
[27] Seregni E, Maccauro M, Chiesa C, et al.  Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy[J]. Eur J Nucl Med Mol Imaging, 2014, 41(2): 223-230.   doi: 10.1007/s00259-013-2578-5
[28] Vinjamuri S, Gilbert TM, Banks M, et al.  Peptide receptor radionuclide therapy with 90Y-DOTATATE/90Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity[J]. Br J Cancer, 2013, 108(7): 1440-1448.   doi: 10.1038/bjc.2013.103
[29]

Wang H, Cheng YJ, Zang JJ, et al. Response to single low-dose 177Lu-DOTA-EB-TATE treatment in patients with advanced neuroendocrine neoplasm: a rrospective pilot study[J/OL]. Theranostics, 2018, 8(12): 3308−3316[2019-06-09]. https://www.thno.org/v08p3308.htm. DOI: 10.7150/thno.25919.

[30] Morgenstern A, Apostolidis C, Kratochwil C, et al.  An overview of targeted alpha therapy with 225Actinium and 213Bismuth[J]. Curr Radiopharm, 2018, 11(3): 200-208.   doi: 10.2174/1874471011666180502104524
[31]

Chan HS, Konijnenberg MW, Daniels T, et al. Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine[J/OL]. EJNMMI Res, 2016, 6(1): 83[2019-06-09]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-016-0240-5. DOI: 10.1186/s13550-016-0240-5.

[32] Kratochwil C, Giesel FL, Bruchertseifer F, et al.  213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11): 2106-2119.   doi: 10.1007/s00259-014-2857-9
[33] Van Binnebeek S, Vanbilloen B, Baete K, et al.  Comparison of diagnostic accuracy of 111In-pentetreotide SPECT and 68Ga-DOTATOC PET/CT: a lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours[J]. Eur Radiol, 2016, 26(3): 900-909.   doi: 10.1007/s00330-015-3882-1
[34]

Kanzaki T, Takahashi Y, Higuchi T, et al. Evaluation of 111In-pentetreotide SPECT imaging correction for GEP-NET[J/OL]. J Nucl Med Technol, 2020, 9: 32887762[2019-06-09]. http://tech.snmjournals.org/content/48/4/326.long. DOI: 10.2967/jnmt.120.249680.

[35] Hope TA, Calais J, Zhang L, et al.  111In-pentetreotide scintigraphy versus. 68Ga-DOTATATE PET: impact on Krenning scores and effect of tumor burden[J]. J Nucl Med, 2019, 60(9): 1266-1269.   doi: 10.2967/jnumed.118.223016
[36] Forrer F, Uusijärvi H, Waldherr C, et al.  A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours[J]. Eur J Nucl Med Molec Imaging, 2004, 31(9): 1257-1262.   doi: 10.1007/s00259-004-1553-6
[37] Czepczyński R, Parisella MG, Kosowicz J, et al.  Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2007, 34(10): 1635-1645.   doi: 10.1007/s00259-007-0479-1
[38] Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R, et al.  99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience[J]. Eur J Nucl Med Mol Imaging, 2006, 33(10): 1123-1133.   doi: 10.1007/s00259-006-0113-7
[39] Ginj M, Zhang HW, Waser B, et al.  Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors[J]. Proc Natl Acad Sci U S A, 2006, 103(44): 16436-16441.   doi: 10.1073/pnas.0607761103
[40] Wild D, Fani M, Behe M, et al.  First clinical evidence that imaging with somatostatin receptor antagonists is feasible[J]. J Nucl Med, 2011, 52(9): 1412-1417.   doi: 10.2967/jnumed.111.088922
[41] Cescato R, Erchegyi J, Waser B, et al.  Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting[J]. J Med Chem, 2008, 51(13): 4030-4037.   doi: 10.1021/jm701618q
[42] Fani M, Del Pozzo L, Abiraj K, et al.  PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference[J]. J Nucl Med, 2011, 52(7): 1110-1118.   doi: 10.2967/jnumed.111.087999
[43] Fani M, Braun F, Waser B, et al.  Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications[J]. J Nucl Med, 2012, 53(9): 1481-1489.   doi: 10.2967/jnumed.112.102764
[44] Nicolas GP, Beykan S, Bouterfa H, et al.  Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study[J]. J Nucl Med, 2018, 59(6): 909-914.   doi: 10.2967/jnumed.117.199737
[45] Nicolas GP, Schreiter N, Kaul F, et al.  Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase Ⅱ imaging study[J]. J Nucl Med, 2018, 59(6): 915-921.   doi: 10.2967/jnumed.117.199760
[46] Krebs S, Pandit-Taskar N, Reidy D, et al.  Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 677-685.   doi: 10.1007/s00259-018-4193-y
[47] Zhu WJ, Cheng YJ, Wang XZ, et al.  Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study[J]. J Nucl Med, 2020, 61(6): 897-903.   doi: 10.2967/jnumed.119.235093
[48] Nicolas GP, Mansi R, McDougall L, et al.  Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect[J]. J Nucl Med, 2017, 58(9): 1435-1441.   doi: 10.2967/jnumed.117.191684
[49] 臧士明, 艾书跃, 姚晓晨, 等.  18F-FDG及68Ga-DOTA-NOC PET/CT对G3神经内分泌肿瘤的诊断比较[J]. 中华核医学与分子影像杂志, 2017, 37(4): 202-206.   doi: 10.3760/cma.j.issn.2095-2848.2017.04.003
Zang SM, Ai SY, Yao XC, et al.  Comparison of 18F-FDG and 68Ga-DOTA-NOC PET/CT on the diagnosis of G3 neuroendocrine neoplasm[J]. Chin J Nucl Med Mol Imaging, 2017, 37(4): 202-206.   doi: 10.3760/cma.j.issn.2095-2848.2017.04.003
[50] von Falck C, Boerner AR, Galanski M, et al.  Neuroendocrine tumour of the mediastinum: fusion of 18F-FDG and 68Ga-DOTATOC PET/CT datasets demonstrates different degrees of differentiation[J]. Eur J Nucl Med Mol Imaging, 2007, 34(5): 812-.   doi: 10.1007/s00259-006-0350-9
[51] Conry BG, Papathanasiou ND, Prakash V, et al.  Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma[J]. Eur J Nucl Med Mol Imaging, 2010, 37(1): 49-57.   doi: 10.1007/s00259-009-1204-z
[52] Ezziddin S, Adler L, Sabet A, et al.  Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system[J]. J Nucl Med, 2014, 55(8): 1260-1266.   doi: 10.2967/jnumed.114.137166
[53] Kotecka-Blicharz A, Hasse-Lazar K, Handkiewicz-Junak D, et al.  131I-MIBG therapy of malignant pheochromocytoma and paraganglioma tumours-a single-centre study[J]. Endokrynol Pol, 2018, 69(3): 246-251.   doi: 10.5603/EP.a2018.0024
[54] Xu D, Zhu W, Huo L, et al.  Validation of Iodine-131-meta-iodobenzylguanidine cardiac scintigraphy in Parkinsonism: a preliminary study[J]. Parkinsonism Relat Disord, 2018, 50: 69-73.   doi: 10.1016/j.parkreldis.2018.02.020
[55]

Saponjski J, Macut D, Sobic-Saranovic D, et al. Somatostatin receptor scintigraphy in the follow up of neuroendocrine neoplasms of appendix[J/OL]. World J Clin Cases, 2020, 8(17): 3697−3707[2019-06-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479554. DOI: 10.12998/wjcc.v8.i17.3697.

[56] Streby KA, Shah N, Ranalli MA, et al.  Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy[J]. Pediatr Blood Cancer, 2015, 62(1): 5-11.   doi: 10.1002/pbc.25200
[57] Noordzij W, Glaudemans AWJM, Schaafsma M, et al.  Adrenal tracer uptake by 18F-FDOPA PET/CT in patients with pheochromocytoma and controls[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1560-1566.   doi: 10.1007/s00259-019-04332-5
[58] Christiansen CD, Petersen H, Nielsen AL, et al.  18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation[J]. Eur J Nucl Med Mol Imaging, 2018, 45(2): 250-261.   doi: 10.1007/s00259-017-3867-1
[59] Koopmans KP, Neels OC, Kema IP, et al.  Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography[J]. J Clin Oncol, 2008, 26(9): 1489-1495.   doi: 10.1200/JCO.2007.15.1126
[60] Neels OC, Jager PL, Koopmans KP, et al.  Development of a reliable remote-controlled synthesis of β-[11C]-5-hydroxy-L-tryptophan on a Zymark robotic system[J]. J Labelled Comp Radiopharm, 2006, 49(10): 889-895.   doi: 10.1002/jlcr.1110