[1] Gromoll C, Karg A. Determination of the dose characteristics in the near area of a new type of 192Ir-HDR afterloading source with a pinpoint ionization chamber[J]. Phys Med Biol,2002, 47(6):875-887.
[2] Reynaert N, Van Eijkeren M, Taeymans Y, et al. Dosimetry of 192Ir sources used for endovascular brachytherapy[J]. Phys Med Biol, 2001, 46(2):499-516.
[3] Daskalov GM, Loffler E, Williamson JF. Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source[J].Med Phys, 1998, 25(11):2200-2208.
[4] Olsson S, Bergstrand ES, Carlsson AK, et al. Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192Ir brachytherapy source, using ESR spectroscopy[J]. Phys Med Biol, 2002, 47(8):1333-1356.
[5] Brezovich IA, Duan J, Pareek PN, et al. In vivo urethral dose measurements:a method to verify high dose rate prostate treatments[J]. Med Phys, 2000, 27(10):2297-2301.
[6] Hood C, Duggan L, Bazley S, et al. LiF:Mg, Cu, P 'pin worms':miniature detectors for brachytherapy dosimetry[J].Radiat Prot Dosim, 2002, 101(4):407-410.
[7] Anagnostopoulos G, Baltas D, Geretschlaeger A, et al. In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CTbased planning for the treatment of prostate cancer[J].Int J Radiat Oncol Biol Phys, 2003,57(4):1183-1191.
[8] Huh S J, Lim DH, Ahn YC, et al. Comparison between in vivo dosimetry and barium contrast technique for prediction of rectal complications in high-dose-rate intracavitary radiotherapy in cervix cancer patients[J]. Strahlenther Onkol,2003, 179(3):191-196.
[9] Pai S, Reinstein LE, Gluckman G, et al. The use of improved radiochromic film for in vivo quality assurance of high dose rate brachytherapy[J]. Med Phys, 1998, 25(7):1217-1221.
[10] Empesy JF, Low DA, Mutic S, et al. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imageing of acute exposure dose distributions[J].Med Phys, 2000, 27(10):2462-2475.
[11] Nutsen BH, Skretting A, Hellebust TP, et al. Determination of 3D dose distribution from intracavitary brachytherapy of cervical cancer by MRI of irradiated ferrous sulphate gel[J].Radiother Oncol, 1997, 43(2):219-227.
[12] Scherer J, Bogner L, Herbst M. The verification of optimized 3D-dosage distributions with an MR Fricke gel[J]. Strahlenther Onkol, 1997, 173(1):36-42.
[13] Calmet C, Vincensini D, Bonnet J, et al. MRI dosimetry:a fast quantitative MRI method to determine 3D absorbed dose distributions[J]. Invest Radiol, 1999, 34(3):236-241.
[14] Silva NA, Nicolucci P, Baffa O. Spatial resolution of magnetic resonance imaging Fricke-gel dosimetry is improved with a honeycomb phantom[J]. Med Phys, 2003, 30(1):17-20.
[15] Mather ML, Baldock C. Ultrasound tomography imaging of radiation dose distributions in polymer gel dosimeters:preliminary study[J]. Med Phys, 2003, 30(8):2140-2148.
[16] Kipouros P, Pappas E, Baras P, et al. Wide dynamic dose range of VIPAR polymer gel dosimetry[J]. Phys Med Biol,2001, 46(8):2143-2159.
[17] Baras P, Seimenis I, Kipouros P, et al. Polymer gel dosimetry using a three-dimensional MRI acquisition technique[J].MedPhys, 2002, 29(11):2506-2516.
[18] Oldham M, Siewerdsen JH, Shetty A, et al. High resolution gel-dosimetry by optical-CT and MR scanning[J]. Med Phys,2001, 28(7):1436-1445.
[19] Pantelisl E, Papagiannis P, Anagnostopoulos G. Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties[J].Phus Med Biol, 2004, 49(7):55-67.
[20] Datta NR, Basu R, Das KJ, et al. Problems in reporting doses and volumes during multiple high-dose-rate intracavitary brachytherapy for carcinoma cervix as per ICRU Report 38:a comparative study using flexible and rigid applicators[J].Gynecol Oncol, 2003,91(2):285-292.